首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term datasets are required to understand the response of long-lived organisms (e.g., gopher tortoises [Gopherus polyphemus]) to management actions, such as prescribed burns. Our objective was to estimate the effects of prescribed burning on gopher tortoise population dynamics over decadal time frames at Fort Stewart Army Reserve, southeastern Georgia, USA. We captured and marked adult tortoises from 1994–2020. In addition, since the early 1990s, managers at Fort Stewart collected spatial records of prescribed burns; thus, we could compare demography of the population to prescribed burning. We used a Bayesian hierarchical model (open population Jolly-Seber model) to estimate population parameters (emigration and survival, immigration and recruitment, and adult abundance) and their relationships with years since burn. We observed opposing responses to years since burn at 2 sites: abundance and the probability of staying (survival plus not emigrating) increased within 1 site when it had been more recently burned (F zones), but abundance and probability of staying in a second site increased when it had been longer since the site was burned (E zones). Some of these effects were weak but indicative of different responses to burning between the sites. Although the sites experienced similar burning regimes, they differed substantially in other habitat features: the F zones had almost twice the tree cover and lower soil sand composition, indicating that tortoise population responses to burning depend on habitat context. We inferred that the primary mechanism for demographic responses to years since burn was likely emigrating adults, which indicates the need for more detailed movement data. Our results demonstrate that gopher tortoise population responses to prescribed burning are complex, context dependent, and primarily influenced by tortoise movements. Therefore, prescribed burn plans may best accommodate spatially dynamic tortoise populations when they create spatial heterogeneity in burn ages within the range of typical tortoise movements. © 2021 The Wildlife Society.  相似文献   

2.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

3.
Shrub encroachment in grasslands is a worldwide problem that has many ecological consequences, transforming previously open environments into dense forests. Disruption of natural fire regimes is one of the main causes of shrub encroachment, and the use of prescribed fire is a common strategy used to restore these ecosystems. In this study, we provide information about how a palm tree savanna under a process of shrub encroachment responds to the reintroduction of fire. We describe the effects of a first fire event on vegetation composition and structure using an experimental approach. We examine a species‐specific response to the fire. After one prescribed fire event applied to four study areas of 16 ha each, we analyzed the change in vegetation physiognomy and composition in burned and control plots for 1 year. Low‐intensity prescribed fire decreased height and cover of most shrub species and increased herbaceous vegetation cover over time. We classified shrub and herbaceous species response to fire according to the time they became present and their phenological characteristics. Our results can help stakeholders to determine if prescribed fire is helpful at reducing shrub encroachment in short term in similar ecosystems, considering how plant community responds to the reintroduction of fire after decades of fire suppression.  相似文献   

4.
Changes to fire regimes have resulted in excessive shrub growth and declines in the species rich herbaceous ground layer of pyric savanna and grassland systems worldwide, including the pine flatwoods of the Southern Coastal Plain of the United States. Prescribed burning and roller chopping during growing (April–October) and dormant (November–March) seasons are management practices promoted to reduce shrub invasion and increase herbaceous plant growth in flatwoods. However, relatively little is known about the seasonal effects these activities have on shrubs and herbaceous vegetation. We assessed the effects of prescribed burning and roller chopping on herbaceous and shrub characteristics in pine flatwoods and explored how grazing may mediate these treatments. We used a paired design, with comparison made between sampling locations randomly located within treated (e.g. burned) and adjacent untreated areas. Growing season burning was more effective at reducing shrub cover and height than dormant season burning. However, shrub re‐growth occurred the second year post‐burn. Roller chopping and roller chopping/burning combinations led to decreases in shrub cover and height for 2 years post‐treatment. Decreases in shrub density were seen on sites subject to growing season roller chopping and grazing. Decreases in herbaceous vegetation were observed following all treatments, possibly the result of grazing. If reductions in shrub density are required, growing season roller chopping in combination with grazing may be the only effective treatment. However, initial deferment from grazing following burning and roller chopping treatments may be necessary to permit re‐establishment and growth of forbs and graminoids.  相似文献   

5.
Woody vegetation can create distinct subcanopy and interspace microsites, which often result in resource islands in subcanopies compared to interspaces. This heterogeneity in soil resources contributes to herbaceous vegetation heterogeneity in plant communities. However, information detailing the impact of disturbance, such as fire, that removes the woody vegetation on microsites and herbaceous vegetation heterogeneity is limited. The purpose of this study was to determine the influence of burning on microsites and herbaceous vegetation in subcanopies and interspaces. Six study sites (blocks) were located at the Northern Great Basin Experimental Range in shrub (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh)-bunchgrass plant communities and one half of each block was burned to remove A. tridentata. Herbaceous vegetation and microsite characteristics were measured 2 years post-fire in intact and burned subcanopies and interspaces. Burning resulted in microsite and herbaceous vegetation differences between intact and burned subcanopies and intact and burned interspaces. However, burned subcanopies and burned interspaces appeared to be relatively similar. The similarity in microsite characteristics probably explains the lack of differences in herbaceous vegetation cover and biomass production between burned subcanopies and burned interspaces (P > 0.05). However, some microsite and herbaceous vegetation characteristics differed between burned subcanopies and burned interspaces. Our results suggest that disturbances that remove woody vegetation reduced microsite and herbaceous vegetation heterogeneity within plant communities, but do not completely remove the resource island effect. This suggests soil resource heterogeneity may influence post-fire community assembly and contribute to diversity maintenance. The Eastern Oregon Agricultural Research Center is jointly funded by the USDA-Agricultural Research Service and Oregon State Agricultural Experiment Station. Mention of a proprietary product does not constitute a guarantee or warranty of the product by USDA, Oregon State University, or the authors and does not imply its approval to the exclusion of other products.  相似文献   

6.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

7.
The ability of prescribed fire to enhance habitat features for Greater Sage-Grouse ( Centrocercus urophasianus ) in Wyoming big sagebrush ( Artemisia tridentata wyomingensis ) in western North America is poorly understood. We evaluated recovery of habitat features important to wintering, nesting, and early brood-rearing Sage-Grouse in Wyoming big sagebrush following prescribed fire. Our case study included 1 year of preburn (1989) and 10 years of postburn data collected over 14 years (1990–2003) from control and burned study areas in the Big Desert of southeastern Idaho, U.S.A. We compared recovery and rate of change for 12 features in four categories between burned and control transects and recovery in burned transects including change in variation. Our results indicate that prescribed fire induced quantifiable changes in wintering, nesting, and early brood-rearing Sage-Grouse habitat features 14 years after fire in Wyoming big sagebrush in our study area. Specifically, grass and litter required by Sage-Grouse for nest and brood concealment recovered relatively rapidly following fire; major forb cover was similar between burned and control sites, but the rate of increase for major forb cover and richness was greater in control transects, and structurally mediated habitat features required by Sage-Grouse for food and cover in winter and for nest and brood concealment in spring recovered slowly following fire. Because shrub structural features in our study did not recover in magnitude or variability to preburn levels 14 years after fire, we recommend that managers avoid burning Wyoming big sagebrush to enhance Sage-Grouse habitat, but rather implement carefully planned treatments that maintain Sagebrush.  相似文献   

8.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

9.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

10.
Dry woodlands frequently experience fire, and the heterogeneous spatial patterning of vegetation cover and fire behavior in these systems can lead to interspersed burned and unburned patches of different vegetation cover types. Biogeochemical processes may differ due to fire and vegetation cover influences on biotic and abiotic conditions, but these persistent influences of fire in the months or years following fire are not as well understood as the immediate impacts of fire. In particular, leaf litter decomposition, a process controlling nutrient availability and soil organic matter accumulation, is poorly understood in drylands but may be sensitive to vegetation cover and fire history. Decomposition is responsive to changes in abiotic drivers or interactions between abiotic conditions and biotic drivers, suggesting that decomposition rates may differ with vegetation cover and fire. The objective of this study was to assess the role of vegetation cover and fire on leaf litter decomposition in a semi-arid pinyon-juniper woodland in southern New Mexico, USA, where prescribed fire is used to combat increasing woody cover. A spatially heterogeneous prescribed burn led to closely co-located but discrete burned and unburned patches of all three dominant vegetation cover types (grass, shrub, tree). Decomposition rates of leaf litter from two species were measured in mesh litterbags deployed in factorial combination of the three vegetation cover types and two fire treatments (burned and unburned patches). For both litter types, decomposition was lower for unburned trees than for unburned grass or shrubs, perhaps due to greater soil–litter mixing and solar radiation away from tree canopies. Fire enhanced litter mass loss under trees, making decomposition rates similarly rapid in burned patches of all three vegetation cover types. Understanding decomposition dynamics in spatially heterogeneous vegetation cover of dry woodlands is critical for understanding biogeochemical process responses to fire in these systems.  相似文献   

11.
12.
ABSTRACT Our study evaluated the effects of prescribed fire on northern bobwhites (Colinus virginianus) occupying native rangelands in Rolling Plains of Texas, USA, during 2002 and 2003. Prescribed fires were conducted during February of 1996, 1998, and 2000; pastures with no recent treatment history served as controls. We quantified bobwhite densities from line transects using distance sampling. We used a repeated-measures analysis of variance to test for treatment-year differences in bobwhite densities. We measured postfire herbaceous and woody vegetation attributes and evaluated vegetation relationships to bobwhite density using simple linear regression. We found significant between-year differences in fall bobwhite densities (F = 13.05, df = 3, P = 0.036) but no differences among treatments or controls. Fall bobwhite densities were inversely related to visual obstruction (r2 = 0.179, df = 15, P = 0.058) and positively associated with increasing heterogeneity of grass cover (r2 = 0.416, df = 15, P = 0.004). Our results suggest prescribed fire at large spatial scales may be a neutral practice for managing bobwhite habitat on semiarid rangelands.  相似文献   

13.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   

14.
After a long period in which fuel loads were sparse, fire recently has occurred with high frequency in the ungrazed riparian zone of the Upper San Pedro River in southern Arizona's Chihuahuan Desert. We studied four accidental fires that occurred during 1994–2003 (two in different years at the same site). Woody vegetation was contrasted between three burned sites and matched spatial controls, and before and after the most recent fire. Herbaceous vegetation was sampled in multiple years producing a chronosequence of time since fire (from 4 months to 8 years). Riparian fire was associated with reductions in woody plant species diversity and canopy cover. In contrast, fire caused a short-term (2 year) pulse of herbaceous plant diversity, driven by annual species, and persistent increase in herbaceous cover. Path analysis indicated that the increase in herbaceous cover was mediated in part by the reduction in tree canopy cover. Ordination (nonmetric multidimensional scaling) and regression analysis also indicated that canopy cover and/or fire played a role in structuring the herbaceous community, although its effects were secondary to that of hydrologic factors (stream flow rate, seasonal flood size). By converting riparian forests to grasslands and savannahs, fire may be shifting structure of the Upper San Pedro floodplain vegetation closer toward conditions present during past centuries when fire was frequent in the upland desert grasslands and embedded riparian corridor.  相似文献   

15.
Loss of native herbivores and introduction of livestock in many arid and semi‐arid ecosystems around the world has shifted the competitive balance from herbaceous to woody plants, leading to biodiversity loss, reduced plant productivity, and soil erosion. To restore functions of these ecosystems, ecological replacements have been proposed as substitutes for extinct native herbivores. Here we predict how an ecological replacement giant tortoise population (Chelonoidis spp.) would interact with woody plants on Pinta Island in the Galápagos Archipelago, where a small group of replacement tortoises was introduced in 2010 to initiate restoration of the island's plant community. We developed an individual‐based, spatially explicit simulation model that incorporated field‐derived tortoise behavior and tortoise–plant interaction data to test whether tortoise introductions could lead to broad‐scale changes in the plant community and, if so, at what tortoise densities. Tortoises reduced vegetation density in most (81%) 50‐year‐long simulations if the tortoise density was at least 0.7 per hectare, a value well below typical densities. In a smaller proportion of simulations (30%), tortoises increased local vegetation patchiness. Our results suggest that even moderate‐density tortoise populations can reverse woody plant encroachment. Deployment of ecological replacement giant tortoises may therefore be a viable approach for restoring other arid and semi‐arid ecosystems where a native herbivore that previously had strong interactions with the plant community has gone extinct .  相似文献   

16.
Question: How are dynamics of early‐seral post‐fire vascular plant and bryoid (terrestrial mosses, lichens, and fungi) vegetation impacted by reforestation activities, particularly manual vegetation removal and planting density? Does the relationship between vegetation dynamics and vegetation removal differ between harsh (west‐facing) and moderate (east‐facing) aspects? Location: Five high‐severity burn plantation forests of Pseudotsuga menziesii in southwestern Oregon, USA. Methods: Plantations severely burned in a recent wildfire were planted with conifer seedlings as a four‐species mixture or a monoculture, at two different densities, with and without manual vegetation removal. A subset of plots was also planted on a contrasting aspect within each plantation. The contrasting aspects differed in potential solar insolation and were indicative of moderate (eastern exposure) and harsh (western exposure) site conditions. Covers of shrub, herbaceous and bryoid vegetation layers were measured during reforestation activities 2–4 yr after the fire. Dynamics of structural layer cover and community composition were compared among treatments with analysis of variance and multivariate analyses (non‐metric multidimensional scaling and blocked multi‐response permutation procedure). Results: Structural layer cover and community composition differed between areas that received reforestation treatments and untreated areas. However, variability within treatments in a plantation was greater than variability within treatments across plantations. Effects of vegetation removal on composition and structure were more evident than effects of planting or altering planting density. Vegetation removal decreased cover of tall and low shrub and the bryoid layer, and increased herbaceous layer cover. Bryoid community and low shrub structural layer responses were more pronounced on moderate aspects than on harsh aspects. Vegetation removal shifted vascular plant community composition towards exotic and annual species. Conclusions: These reforestation treatments may be implemented without substantially altering early‐seral vegetation community composition dynamics, especially in areas with harsh site conditions. Site conditions, such as aspect, should be evaluated to determine need and potential effects of reforestation before implementation. Monitoring for exotic species establishment should follow reforestation activities.  相似文献   

17.
One of the largest and rarest Bebb willow (Salix bebbiana) communities in the United States occurs at Hart Prairie, Arizona. Low recruitment of the willow over the past several decades has been linked to inadequate soil water content for seed germination and seedling establishment. We tested a hypothesis that a prescribed burn would reduce biomass of and evapotranspiration by herbaceous plants, thereby increasing soil water content. Three treatments (unburned control, early‐growing season burned, late‐growing season burned) were applied in year 2001 to replicated plots in fern‐ and grass‐dominated herbaceous communities. Soil water content (0–30 cm) was measured weekly in plots during the 2001, 2002, and 2003 growing seasons. Both early‐ and late‐season burning reduced herbaceous biomass in the fern‐dominated community in 2002 and 2003 and reduced biomass in the grass‐dominated community in 2002 but not in 2003. Soil water content increased for approximately four weeks in 2001 following the early‐season burn, but the early‐season and late‐season burns reduced soil water content in both communities over much of the 2002 and 2003 growing seasons. Thus, early‐season burning may benefit willow seed germination by increasing soil water content immediately following burning but be detrimental to germination in the second and third growing seasons after burning because of drier soil. Large temporal variation in the effect of prescribed burning on soil water content will complicate the use of fire as a restoration tool to manage soil water available for threatened plants such as Bebb willow and for recharge of groundwater.  相似文献   

18.
Expansion of woody species into herbaceous wetlands is a serious concern in wetland management. Prescribed fire is often used as a tool to manage woody species, although many species resprout after fire making control problematic. In this study, we assessed the usefulness of repeated dormant season fires for controlling Salix caroliniana (Michx.) in a floodplain marsh in Florida. Salix is a common shrub in southeastern marshes that resprouts prolifically after fire. We compared stem basal area, stem density, and cover of Salix in three adjacent sites in a floodplain marsh in east central Florida. One site was burned once in February 1997, another site was burned in February 1997 and then again in March 1999 and one site was left unburned. At the unburned site, Salix stem basal area, stem density, and cover increased over the course of the study. In the two burned sites, the first fire destroyed large diameter stems and stimulated production of sprouts. As a result, stem basal area and cover decreased but stem density remained unchanged. The second fire caused a decline in stem density and a further decline in cover. Changes in understory species composition and cover could not be attributed to the fires. Our results suggest that dormant season fires are effective in reducing Salix cover and basal area, and that repeated fires have greater effects than a single fire.  相似文献   

19.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

20.
Despite the acknowledged importance of prescribed fire in creating northern bobwhite (Colinus virginianus) breeding cover, little research has investigated bobwhite breeding season habitat selection relative to time since fire. In 2016 and 2017, we monitored radio-tagged bobwhite on a 17,000-ha portion of a military installation managed with frequent (every ~3 years) prescribed fires, applied during the growing and dormant seasons. We monitored bobwhite to determine which vegetation characteristics associated with prescribed burning were important to bobwhite breeding season habitat selection at the microsite (i.e., telemetry location compared to nearby random location) and the macrosite scale (i.e., the burn-unit containing the location compared to study area availability). During 2 breeding seasons, we collected 2,315 bobwhite locations and compared percent cover of vegetation, days since burn, basal area, and distance to key landscape features (e.g., stream, wildlife opening) at a subset of microsite locations (301 locations during 2016 and 890 locations during 2017) to paired random locations. At the microsite scale, bobwhite selected lower basal area of hardwoods, greater woody understory cover, greater other (not wiregrass [Aristida stricta]) grass cover, and greater forb cover than at random points. At the macrosite scale, bobwhite selected units with <4.6 m2/ha basal area (combined hardwoods and pines) in 2016 and units with <9.2 m2/ha basal area in 2017. At the macrosite scale, bobwhite selected for areas burned in the dormant season of the same year, avoided areas burned in the growing season of the same year, and used other times since last burn categories proportionate to their availability. The selection for a low basal area at both scales indicates prescribed fire effects would be limited by shading from dense overstory, and the shrubs, grasses, and forbs that provide essential cover for bobwhite during the breeding season will not develop. In lower productivity soil regions similar to our study area, we advise that thinning operations set target basal areas below 10 m2/ha to create and maintain breeding season habitat for northern bobwhite. © 2019 The Wildlife Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号