首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Male and female predators are often assumed to have the same effects on prey. Because of differences in body size and behavior, however, male and female predators may use different species, sexes, and ages of prey, which could have important implications for wildlife conservation and management. We tested for differential prey use by male and female cougars (Puma concolor) from 2003 to 2008 in Washington State. We predicted that male cougars would kill a greater proportion of larger and older prey (i.e., adult elk [Cervus elaphus]), whereas females would kill smaller and younger prey (i.e., elk calves, mule deer [Odocoileus hemionus]). We marked cougars with Global Positioning System (GPS) radio collars and investigated 436 predation sites. We located prey remains at 345 sites from 9 male and 9 female cougars. We detected 184 mule deer, 142 elk, and 17 remains from 4 other species. We used log-linear modeling to detect differences in species and age of prey killed among cougar reproductive classes. Solitary females and females with dependent offspring killed more mule deer than elk (143 vs. 83, P < 0.01), whereas males killed more elk than mule deer (59 vs. 41, P < 0.01). Proportionately, males killed 4 times more adult elk than did females (24% vs. 6% of kills) and females killed 2 times more adult mule deer than did males (26% vs. 15% of kills). Managers should consider the effects of sex of predator in conservation and management of ungulates, particularly when managing for sensitive species. © 2011 The Wildlife Society.  相似文献   

2.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.  相似文献   

3.
ABSTRACT Postpartum behavior of maternal deer may be specific to species of deer and predators. We captured sympatric white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus eremicus) fawns from radiocollared adult females in 2004–2006 on rangelands of west central Texas, USA, where predators larger than bobcats (Lynx rufus) were absent. Our objective was to determine whether differences in postpartum antipredator behavior existed between deer species, and if so, examine efficacy of those strategies. We collected postpartum group cohesion data in 2004 and 2005 by using radiotelemetry and examined dead fawns for cause of mortality. During fawns' hider phase, <3 weeks postpartum, mule deer females kept fawns closer to themselves (95% CI = 39−66 m) and twins closer to each other (95% CI = 25–49 m) than did white-tailed deer females (95% CIs = 152–234 m and 163–255 m, respectively). After 30 days postpartum, familial group cohesion was similarly tight for both species. During hider phases from 2004 to 2006, predated carcasses of white-tailed deer fawns (11 of 11) were dismembered or consumed more than mule deer fawns (7 of 13, P = 0.016), which was one line of evidence for maternal defense by mule deer adults. During hider phases in 2004 and 2005, predation rate of mule deer fawns was lower than that for white-tailed deer fawns. In 2006, predation rate increased for mule deer but was similar for white-tailed deer fawns compared with previous years. The tight cohesion strategy of mule deer exhibited in 2004 and 2005 seemed successful at thwarting small predators. Without large predators, the loose cohesion strategy of white-tailed deer females was maladaptive. When meso-predators are abundant due to extermination of larger predators, predation on fawns could increase if a deer species has relatively fixed postpartum maternal antipredator behavior.  相似文献   

4.
Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed‐effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade‐off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems.  相似文献   

5.
Abstract: Assessing the impact of large carnivores on ungulate prey has been challenging in part because even basic components of predation are difficult to measure. For cougars (Puma concolor), limited field data are available concerning fundamental aspects of predation, such as kill rate, or the influence of season, cougar demography, or prey vulnerability on predation, leading to uncertainty over how best to predict or interpret cougar-ungulate dynamics. Global Positioning System (GPS) telemetry used to locate predation events in the field is an efficient way to monitor large numbers of cougars over long periods in all seasons. We applied GPS telemetry techniques combined with occasional snow-tracking to locate 1,509 predation events for 53 marked and an unknown number of unmarked cougars and amassed 9,543 days of continuous predation monitoring for a subset of 42 GPS-collared cougars in west-central Alberta, Canada. Cougars killed ungulates at rates near the upper end of the previously recorded range, and demography substantially influenced annual kill rate in terms of both number of ungulates (subad F [SAF] = 24, subad M [SAM] = 31, ad M = 35, ad F = 42, ad F with kittens <6 months = 47, ad F with kittens <6 months = 67) and kg of prey (SAF = 1,441, SAM = 2,051, ad M = 4,708, ad F = 2,423, ad F with kittens <6 months = 2,794, ad F with kittens >6 months = 4,280). Demography also influenced prey composition; adult females subsisted primarily on deer (Odocoileus spp.), whereas adult males killed more large ungulates (e.g., moose [Alces alces]), and subadults incorporated the highest proportion of nonungulate prey. Predation patterns varied by season and cougars killed ungulates 1.5 times more frequently in summer when juveniles dominated the diet. Higher kill rate in summer appeared to be driven primarily by greater vulnerability of juvenile prey and secondarily by reduced handling time for smaller prey. Moreover, in accordance with predictions of the reproductive vulnerability hypothesis, female ungulates made up a higher proportion of cougar diet in spring just prior to and during the birthing period, whereas the proportion of males increased dramatically in autumn during the rut, supporting the notion that prey vulnerability influences cougar predation. Our results have implications for the impact cougars have on ungulate populations and have application for using cougar harvest to manage ungulates.  相似文献   

6.
Abstract: During severe winters, mule deer (Odocoileus hemionus) concentrated on ranges in poor condition can experience high mortality. Winter-feeding programs have been implemented to mitigate this mortality. We studied effects on body condition, mortality, fawn production, and migration of mule deer following winter-feeding in the Cache-Wasatch Mountains of northern Utah, USA. Fed deer exhibited 12% higher live body-condition indices both years (main effect feed: F1,7.32 = 5.39, P = 0.052), lower mortality (33% vs. 55%: χ21= 4.58, P < 0.05), and produced more fawns (19 fawns:18 fed F vs. 11 fawns:12 nonfed F; t27.2 = 2.20, P < 0.036) than nonfed deer. Fed deer migrated later in spring 2004 (x̄ = 13 Apr) than nonfed deer (x̄ = 24 Mar; t34= 3.25, P = 0.003). Fed deer spent more time on winter range in 2003-2004 (x̄ = 157 d) than nonfed deer (x̄ = 121 d; t20 = 3.63, P = 0.002), and more time on winter range for both winters combined (fed deer x̄ = 321 d, nonfed deer x̄ = 257 d; t27 = 3.29, P = 0.003). Concomitantly, wildlife managers need to recognize that any possible benefits accrued to mule deer populations in terms of increased nutritional status as a result of winter-feeding programs may be mitigated by altered timing of migration and increased duration of use of seasonal ranges by fed deer.  相似文献   

7.
Natural controls on the distribution, abundance, or growth rates of exotic species are a desirable mode of intervention because of lower costs compared to anthropogenic controls and greater social acceptance. In the Great Basin, cougars (Puma concolor) are the most widely distributed carnivore capable of killing large ungulate prey. Populations of feral horses (Equus ferus) are widely distributed throughout the Great Basin and can grow at rates up to 20%/year. Although cougars exhibit distributional overlap with horses, it has been assumed that predation is minimal because of differences in habitat use and body-size limitations. To evaluate this hypothesis, we monitored the diets of 21 global positioning system (GPS)-collared cougars in the western Great Basin (5 males, 8 females) and eastern Sierra Nevada (2 males, 6 females) from 2009–2012. We investigated 1,310 potential kill sites and located prey remains of 820 predation events. We compared prey composition and kill rates of cougars inhabiting the Sierra Nevada and Great Basin, and among male and female cougars across seasons. We used generalized linear mixed models (GLMMs) to examine the effects of prey availability and habitat characteristics on the probability of predation on horses by cougars. Mule deer (Odocoileus hemionus) comprised 91% of prey items killed on the Sierra Nevada reference site but only comprised 29% of prey items in the Great Basin study area. Average annual kill rates for deer differed between the Sierra Nevada ( = 0.85 deer/week, range = 0.44–1.3) and Great Basin ( = 0.21 deer/week, range = 0.00–0.43). Diets of cougars in the Great Basin were composed predominantly of horses (59.6%, n = 460 prey items; 13 individuals). Ten cougars regularly consumed horses, and horses were the most abundant prey in the diet of 8 additional individuals in the Great Basin. Cougars on average killed 0.38 horses/week in the Great Basin (range=0.00–0.94 horses/week). Differences in predation on horses between the sexes of cougars were striking; Great Basin females incorporated more horses across all age classes year-round, whereas male cougars tended to exploit neonatal young during spring and summer before switching to deer during winter. Within GLMM models, the probability of predation on horses compared to other prey species increased with elevation, horse density, and decreasing density of mule deer on the landscape, and was more likely to occur in sagebrush (Artemesia spp.) than in pinyon (Pinus monophylla)–juniper (Juniperus osteosperma) forests. Behavior of individual cougars accounted for more than a third of the variation explained by our top models predicting predation on horses in the Great Basin. At landscape scales, cougar predation is unlikely to limit the growth of feral horse populations. In the Great Basin ecosystem, however, cougars of both sexes successfully preyed on horses of all age classes. Moreover, some reproductive, female cougars were almost entirely dependent on feral horses year-round. Taken together, our data suggest that cougars may be an effective predator of feral horses, and that some of our previous assumptions about this relationship should be reevaluated and integrated into management and planning. © 2021 The Wildlife Society.  相似文献   

8.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

9.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

10.
Abstract: Because of significant declines in mule deer (Odocoileus hemionus) populations across New Mexico, USA, we investigated survival of fawns in north-central New Mexico, USA. We captured 19 fawns, 34 fawns, and 47 fawns in 2002, 2003, and 2004, respectively, and used fawn morphological measurements, habitat characteristics, and adult female (hereafter “female”) condition to model preweaning fawn survival. Survival was 0.0, 0.12, 0.52 for 2002, 2003, and 2004, respectively, and was related to birth mass (χ12 = 9.5, P = 0.002), birth date (χ12= 8.4, P = 0.004), litter size (χ22 = 9.4, P = 0.009), female body fat (χ12 = 40.9, P < 0.001), annual precipitation (χ12 = 35.0, P < 0.001), summer precipitation (χ12= 37.5, P < 0.001), and winter precipitation (χ12 = 32.0, P < 0.001). Total ingesta-free body fat of females (β = 3.01, SE = 0.75; odds ratio = 20.19, 95% CI = 4.64-87.91) and birth mass of fawns (β = 1.188, SE = 0.428; odds ratio = 3.38, 95% CI = 1.42-7.59) were the best predictors of survival of individual fawns, although few of the logistic models differed in model selection criteria. Fawn survival in north-central New Mexico was driven by an interaction of total and seasonal precipitation and its effect on plant production, consequential effects on female nutrition, and ultimately, fawn birth attributes. Habitat conditions were so poor throughout north-central New Mexico during 2002 and 2003 (and likely during other drought yr) that, based upon birth attributes, few fawns could have survived regardless of proximate causes of mortality. In 2004, precipitation enhanced security cover, maternal body condition, birth attributes and, thus, survival of fawns. However, more habitat enhancements are needed to improve the nutritional quality of mule deer habitats in north-central New Mexico and further enhance maternal and fawn condition to recover mule deer populations in this region.  相似文献   

11.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

12.
Several conceptual models describing patterns of prey selection by predators have been proposed, but such models rarely have been tested empirically, particularly with terrestrial carnivores. We examined patterns of prey selection by sympatric wolves ( Canis lupus ) and cougars ( Puma concolor ) to determine i) if both predators selected disadvantaged prey disproportionately from the prey population, and ii) if the specific nature and intensity of prey selection differed according to disparity in hunting behavior between predator species. We documented prey characteristics and kill site attributes of predator kills during winters 1999–2001 in Idaho, and located 120 wolf-killed and 98 cougar-killed ungulates on our study site. Elk ( Cervus elephus ) were the primary prey for both predators, followed by mule deer ( Odocoileus hemionus ). Both predators preyed disproportionately on elk calves and old individuals; among mule deer, wolves appeared to select for fawns, whereas cougars killed primarily adults. Nutritional status of prey, as determined by percent femur marrow fat, was consistently poorer in wolf-killed prey. We found that wolf kills occurred in habitat that was more reflective of the entire study area than cougar kills, suggesting that the coursing hunting behavior of wolves likely operated on a larger spatial scale than did the ambush hunting strategy of cougars. We concluded that the disparity in prey selection and hunting habitat between predators probably was a function of predator-specific hunting behavior and capture success, where the longer prey chases and lower capture success of wolf packs mandated a stronger selection for disadvantaged prey. For cougars, prey selection seemed to be limited primarily by prey size, which could be a function of the solitary hunting behavior of this species and the risks associated with capturing prime-aged prey.  相似文献   

13.
ABSTRACT Conversion of native winter range into producing gas fields can affect the habitat selection and distribution patterns of mule deer (Odocoileus hemionus). Understanding how levels of human activity influence mule deer is necessary to evaluate mitigation measures and reduce indirect habitat loss to mule deer on winter ranges with natural gas development. We examined how 3 types of well pads with varying levels of vehicle traffic influenced mule deer habitat selection in western Wyoming during the winters of 2005–2006 and 2006–2007. Well pad types included producing wells without a liquids gathering system (LGS), producing wells with a LGS, and well pads with active directional drilling. We used 36,699 Global Positioning System locations collected from a sample (n = 31) of adult (>1.5-yr-old) female mule deer to model probability of use as a function of traffic level and other habitat covariates. We treated each deer as the experimental unit and developed a population-level resource selection function for each winter by averaging coefficients among models for individual deer. Model coefficients and predictive maps for both winters suggested that mule deer avoided all types of well pads and selected areas further from well pads with high levels of traffic. Accordingly, impacts to mule deer could probably be reduced through technology and planning that minimizes the number of well pads and amount of human activity associated with them. Our results suggested that indirect habitat loss may be reduced by approximately 38–63% when condensate and produced water are collected in LGS pipelines rather than stored at well pads and removed via tanker trucks. The LGS seemed to reduce long-term (i.e., production phase) indirect habitat loss to wintering mule deer, whereas drilling in crucial winter range created a short-term (i.e., drilling phase) increase in deer disturbance and indirect habitat loss. Recognizing how mule deer respond to different types of well pads and traffic regimes may improve the ability of agencies and industry to estimate cumulative effects and quantify indirect habitat losses associated with different development scenarios.  相似文献   

14.
ABSTRACT We conducted a pilot study to test the usefulness of Global Positioning System (GPS) collars for investigating wolf (Canis lupus) predation on white-tailed deer (Odocoileus virginianus) fawns. Using GPS collars with short location-attempt intervals on 5 wolves and 5 deer during summers 2002–2004 in northeastern Minnesota, USA, demonstrated how this approach could provide new insights into wolf hunting behavior of fawns. For example, a wolf traveled ≥1.5–3.0 km and spent 20–22 hours in the immediate vicinity of known fawn kill sites and ≥0.7 km and 8.3 hours at scavenging sites. Wolf travel paths indicated that wolves intentionally traveled into deer summer ranges, traveled ≥0.7–4.2 km in such ranges, and spent <1–22 hours per visit. Each pair of 3 GPS-collared wolf pack members were located together for ≤6% of potential locations. From GPS collar data, we estimated that each deer summer range in a pack territory containing 5 wolves ≥1 year old and hunting individually would be visited by a wolf on average every 3–5 days. This approach holds great potential for investigating summer hunting behavior of wolves in areas where direct observation is impractical or impossible.  相似文献   

15.
Adult female survival is an important component to population models and management programs for white-tailed deer (Odocoileus virginianus), but short-term survival studies (1–3 yrs) may not accurately reflect the variation in interannual survival, which could alter management decisions. We monitored annual survival and cause-specific mortality rates of adult female white-tailed deer (n = 158) for 6 years (2010–2012, 2016–2018) in southern Delaware, USA. Annual survival rate differed among years. Survival rates (±SE) and mortality causes were similar in 3 years (2011 = 0.72 ± 0.08, 2017 = 0.68 ± 0.08, 2018 = 0.74 ± 0.09) and comparable to previous research from mixed forest-agricultural landscapes. A relatively low survival rate in 2010 (0.48 ± 0.11) was influenced by hunter harvest and potentially compounded by abnormally severe winter conditions in the prior year. A peracute outbreak of hemorrhagic disease occurred during summer 2012, resulting in an annual survival rate of 0.38 ± 0.11, and to our knowledge is the first reported case of a hemorrhagic disease outbreak in a monitored wild population with known fates. In 2016, we did not observe any harvest mortality, resulting in high annual survival (0.96 ± 0.04). Our results demonstrate the degree of variability in annual survival and cause-specific mortality rates within a population. We caution against the use of short-term survival studies to inform management decisions, particularly when incorporating survival data into population models or when setting harvest objectives. © 2020 The Wildlife Society.  相似文献   

16.
Coyotes (Canis latrans) may affect adult and neonate white-tailed deer (Odocoileus virginianus) survival and have been implicated as a contributor to the decline of deer populations. Additionally, coyote diet composition is influenced by prey availability, season, and region. Because coyote movement and diet vary by region, local data are important to understand coyote population dynamics and their impact on prey species. In southeast Minnesota, we investigated the effect of coyotes on white-tailed deer populations by documenting movement rates, distances moved, and habitats searched by coyotes during fawning and nonfawning periods. Additionally, we determined survival, cause-specific mortality, and seasonal diet composition of coyotes. From 2001 to 2003, we captured and radiocollared 30 coyotes. Per-hour rate of movement averaged 0.87 km and was greater (P = 0.046) during the fawning (1.07 km) than the nonfawning period (0.80 km); areas searched were similar (P = 0.175) between seasons. Coyote habitat use differed during both seasons; habitats were not used in proportion to their availability (P < 0.001). Croplands were used more (P < 0.001) than their proportional availability during both seasons. Use of grasslands was greater during the fawning period (P = 0.030), whereas use of cropland was greater in the nonfawning period (P < 0.001). We collected 66 fecal samples during the nonfawning period; coyote diets were primarily composed of Microtus spp. (65.2%), and consumption of deer was 9.1%. During the study, 19 coyotes died; annual survival rate range was 0.33–0.41, which was low compared with other studies. Consumption of deer was low and coyotes searched open areas (i.e., cropland) more than fawning areas with dense cover. These factors in addition to high coyote mortality suggested that coyote predation was not likely limiting white-tailed deer populations in southeast Minnesota. © 2011 The Wildlife Society.  相似文献   

17.
ABSTRACT We assessed whether use of 2 methods, intensive very high frequency (VHF) radiotelemetry and Global Positioning System (GPS) cluster sampling, yielded similar estimates of cougar (Puma concolor) kill rates in Yellowstone National Park, 1998–2005. We additionally determined biases (underestimation or overestimation of rates) resulting from each method. We used modeling to evaluate what characteristics of clusters best predicted a kill versus no kill and further evaluated which predictor(s) minimized effort and the number of missed kills. We conducted 16 VHF ground predation sequences resulting in 37 kill intervals (KIs) and 21 GPS sequences resulting in 84 KIs on 6 solitary adult females, 4 maternal females, and 5 adult males. Kill rates (days/kill and biomass [kg] killed/day) did not differ between VHF and GPS predation sampling methods for maternal females, solitary adult females, and adult males. Sixteen of 142 (11.3%) kills detected via GPS clusters were missed through VHF ground-based sampling, and the kill rate was underestimated by an average of 5.2 (95% CI = 3.8–6.6) days/kill over all cougar social classes. Five of 142 (3.5%) kills identified by GPS cluster sampling were incorrectly identified as the focal individual's kill from scavenging, and the kill rate was overestimated within the adult male social class by an average of 5.8 (95% CI = 3.0–8.5) days/ungulate kill. The number of nights (locations between 2000 hours and 0500 hours) a cougar spent at a cluster was the most efficient variable at predicting predation, minimizing the missed kills, and minimizing number of extra clusters that needed to be searched. In Yellowstone National Park, where competing carnivores displaced cougars from their kills, it was necessary to search extra sites where a kill may not have been present to ensure we did not miss small, ungulate prey kills or kills with displacement. Using predictions from models to assign unvisited clusters as no kill, small prey kill, or large prey kill can bias downward the number of kills a cougar made and bias upward kills made by competitors that displace cougars or scavenge cougar kills. Our findings emphasize that field visitation is crucial in determining displacement and scavenging events that can result in biases when using GPS cluster methods in multicarnivore systems.  相似文献   

18.
Variation in white-tailed deer (Odocoileus virginianus) mortality during winter affects population growth in cold climates. Across the northern extent of their range, mortality increases with colder temperatures and snow. Few studies have examined the relationships between winter conditions and deer mortality, and no studies have concurrently studied this relationship for different ages of deer across multiple years and landscapes. We used recently developed cause-specific mortality models to evaluate temporal and age-class variation in deer mortality in farmland areas and compared to published results from forest areas in Wisconsin, USA, from 2011–2014. We then used temporally varying snow and temperature covariates to predict mortality trends using telemetry information from 860 deer. Cause-specific mortality in the farmland varied by age and year, similar to results from previous research in the forest. Human-related mortality was the leading cause of mortality in the farmland during most years and ranged from 4.3% to 10.3% for juveniles and 3.6% to 9.1% for adults from 2011–2014. Very little predation occurred in the farmland, and this differed from previous research in the forest where predation was the leading cause of mortality. During more severe winters (2013 and 2014), other mortality, usually associated with starvation, was the leading cause of mortality for juveniles in the farmland but not adults. In the forest, we found support for saturating effects of accumulated snow depth days >30.5 cm and accumulated temperature days >0°C on mortality. We also found support for the relationship of mortality with accumulated temperature days >0°C in the farmland but no relationship with snow depth. Deer tolerate sustained cold temperatures, but the timing of winter to spring transition is more important for deer survival in both forested and agricultural areas. In the absence of empirical survival information, managers can use our model to predict annual winter effects on deer survival, which can provide improved inference compared to traditional winter severity indices. Our results suggest changes in predator abundance may have minor influence on overwinter survival compared to winter weather. Based on mortality estimates from previous research, the highest predation rates on juvenile deer in the forest occurred when wolf (Canis lupus) counts were lowest and when wolf abundance was highest, juvenile deer predation rates were lowest. © 2021 The Wildlife Society.  相似文献   

19.
ABSTRACT Delineating populations is critical for understanding population dynamics and managing habitats. Our objective was to delineate subpopulations of migratory female white-tailed deer (Odocoileus virginianus) in the central Black Hills, South Dakota and Wyoming, USA, on summer and winter ranges. We used fuzzy classification to assign radiocollared deer to subpopulations based on spatial location, characterized subpopulations by trapping sites, and explored relationships among survival of subpopulations and habitat variables. In winter, Kaplan-Meier estimates for subpopulations indicated 2 groups: high (S = 0.991 ± 0.005 [x̄ ± SE]) and low (S = 0.968 ± 0.007) weekly survivorship. Survivorship increased with basal area per hectare of trees, average diameter at breast height of trees, percent cover of slash, and total point-center quarter distance of trees. Cover of grass and forbs were less for the high survivorship than the lower survivorship group. In summer, deer were spaced apart with mixed associations among subpopulations. Habitat manipulations that promote or maintain large trees (i.e., basal area = 14.8 m2/ha and average dbh of trees = 8.3 cm) would seem to improve adult survival of deer in winter.  相似文献   

20.
In many parts of North America, deer (Odocoileus spp.) have adapted to live in urban areas and are a source of negative human-wildlife interactions. Management strategies such as culling, immunocontraceptives, sterilization, and translocation have been implemented to manage urban deer populations. In the East Kootenay region of southern British Columbia, urban mule deer (Odocoileus hemionus) populations have been increasing, whereas non-urban mule deer populations have decreased. In 2014 a non-urban mule deer research project began in the area and in 2016 an urban deer translocation trial was approved in the same region. We fit 121 non-urban deer with global positioning system (GPS)-collars and translocated 135 urban mule deer to non-urban areas, of which 57 were fit with GPS-collars. We tested if annual survival between urban translocated (i.e., translocated) and non-urban deer differed, and if translocated deer survival increased in subsequent years after translocation. We also determined if age, body condition, release site, capture area and distance between capture and release sites affected translocated deer survival. We evaluated if translocated deer exhibited different movement behaviors than non-urban deer by comparing probability of migration, maximum net displacement, home range size, and probability of crossing a paved road. Finally, during our study we observed some translocated deer return to a municipal area after translocation and assessed if any covariates such as age, release site, or capture city could help predict this behavior. Annual survival of translocated deer was 0.48 and was significantly lower than survival of non-urban deer, which was 0.77. We observed 20 of 57 collared translocated deer return to a town after translocation. Translocated deer had larger net displacements and larger seasonal home range sizes than non-urban deer. Non-urban deer were more likely to migrate than translocated deer and crossed fewer paved roads than translocated deer. The management effectiveness of translocation to reduce urban deer densities is mixed because annual survival of translocated deer may be lower than may be acceptable to some stakeholders. Additionally, some translocated deer returned to an urban area, and the large distances traveled by deer after translocation may unintentionally spread disease. © 2020 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号