首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.  相似文献   

2.
Since the collapse of the Soviet Union in 1991, the abundance and distribution of many central Asian steppe birds have been affected by changes in agricultural land management, such as the abandonment of large areas of cropland and changing grazing patterns. However, the underlying population processes that drive patterns of abundance and distribution are poorly understood. We compared the population ecology of the Black Lark Melanocorypha yeltoniensis on natural steppe and abandoned cropland. Between 2009 and 2013, we used distance sampling to quantify Black Lark population density, monitored 220 nests to assess reproductive performance, and modelled habitat selection at several scales. Arthropod food availability was compared using pitfall traps. Mean population densities were three times higher on abandoned cropland compared to those in steppe, and varied with time since abandonment. Nest survival rates were significantly lower on abandoned cropland compared to steppe, probably due to higher predation pressure. Chick growth rates were also lower on abandoned cropland, despite higher insect availability in this habitat. Habitat selection was strongly influenced by grazing intensity and vegetation structure. We suggest that Black Larks are generally attracted to abandoned cropland because of its suitable vegetation structure and higher food availability. The results of a fecundity model suggested that the number of breeding attempts on abandoned cropland necessary to produce the same number of fledglings as one nesting attempt in steppe habitat was 2.04 in 2011 and 3.62 in 2013. However, a phenological analysis revealed that there were only two peaks in first egg dates, making more than two re-nesting attempts per year unlikely. Therefore, abandoned cropland could, at least in some years, be an ecological trap for the species. Our results illustrate that the effects of land-use change on animal populations should not only be assessed using species densities, but also incorporate detailed demographic analyses. If current densities in steppe habitat corresponded to maximum carrying capacity, overall population densities of Black Larks are likely to decline in the near future as availability of abandoned cropland as nesting habitat is currently decreasing.  相似文献   

3.
Conspecific nesting density affects many aspects of breeding biology, as well as habitat selection decisions. However, the large variations in breeding density observed in many species are yet to be fully explained. Here, we investigated the settlement patterns in a colonial species with variable breeding density and where resource distribution could be manipulated. The zebra finch, Taeniopygia guttata, is a classic avian model in evolutionary biology but we know surprisingly very little about nest site selection strategies and nesting densities in this species, and in fact, in nomadic species in general. Yet, important determinants of habitat selection strategies, including temporal predictability and breeding synchrony, are likely to be different in nomadic species than in the non‐nomadic species studied to date. Here, we manipulated the distribution of nesting sites (by providing nest boxes) and food patches (feeders) to test four non‐exclusive habitat selection hypotheses that could lead to nest aggregation: 1) attraction to resources, 2) attraction to breeding conspecifics, and 3) attraction to successful conspecifics and 4) use of private information (i.e. own reproductive success on a site). We found that wild zebra finches used conspecific presence and possibly reproductive success, to make decisions over where to locate their nests, but did not aggregate around water or food within the study areas. Moreover, there was a high degree of inter‐individual variation in nesting density preference. We discuss the significance of our results for habitat selection strategy in nomadic species and with respect to the differential selection pressures that individuals breeding at different densities may experience.  相似文献   

4.
ABSTRACT Within forests susceptible to wildfire and insect infestations, land managers need to balance dead tree removal and habitat requirements for wildlife species associated with snags. We used Mahalanobis distance methods to develop predictive models of white-headed woodpecker (Picoides albolarvatus) nesting habitat in postfire ponderosa pine (Pinus ponderosa)-dominated landscapes on the Fremont-Winema National Forests in south central Oregon, USA. The 1-km radius (314 ha) surrounding 45 nest sites was open-canopied before fire and a mosaic of burn severities after wildfire. The 1-ha surrounding nests of white-headed woodpeckers had fewer live trees per hectare and more decayed and larger diameter snags than at non-nest sites. The leading cause of nest failure seemed to be predation. Habitat and abiotic features were not associated with nest survival. High daily survival rates and little variation within habitat features among nest locations suggest white-headed woodpeckers were consistently selecting high suitability habitats. Management activities that open the forest canopy and create conditions conducive to a mosaic burn pattern will probably provide suitable white-headed woodpecker nesting habitat after wildfire. When making postfire salvage logging decisions, we suggest that retention of larger, more decayed snags will provide nesting habitat in recently burned forests.  相似文献   

5.
We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion–juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low–moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations. © 2011 The Wildlife Society.  相似文献   

6.
ABSTRACT Models of habitat suitability in postfire landscapes are needed by land managers to make timely decisions regarding postfire timber harvest and other management activities. Many species of cavity-nesting birds are dependent on postfire landscapes for breeding and other aspects of their life history and are responsive to postfire management activities (e.g., timber harvest). In addition, several cavity nesters are designated as species at risk. We compare the ability of 2 types of models to distinguish between nest and non-nest locations of 6 cavity-nesting bird species (Lewis's woodpecker [Melanerpes lewis], black-backed woodpecker [Picoides arcticus], hairy woodpecker [P. villosus], northern flicker [Colaptes auratus], western bluebird [Sialia mexicana], and mountain bluebird [S. currucoides]) in the early postfire years for a ponderosa pine (Pinus ponderosa) forest in Idaho, USA. The 2 model sets consisted of 1) models based on readily available remotely sensed data and 2) models containing field-collected data in addition to remotely sensed data (combination models). We evaluated models of nesting habitat by quantifying the model's ability to correctly identify nest and non-nest locations and by determining the percentage of correctly identified nest locations. Additionally, we developed relative habitat-suitability maps for nesting habitat of black-backed and Lewis's woodpeckers from the best models. For all species except Lewis's woodpeckers, model performance improved with the addition of field-collected data. Models containing remotely sensed data adequately distinguished between nest and non-nest locations for black-backed woodpecker and Lewis's woodpecker only, whereas models containing both field-collected and remotely sensed data were adequate for all 6 species. Improvements in the availability of more accurate remote sensing technology would likely lead to improvements in the ability of the models to predict nesting locations. External validation with data from other wildfires is necessary to confirm the general applicability of our habitat-suitability models to other forests. Land managers responsible for maintaining habitat for cavity-nesting birds in postfire landscapes can use these models to identify potential nesting areas for these species and select areas in burned forests where postfire salvage logging is most likely to have minimal impacts on cavity-nesting bird habitats.  相似文献   

7.
Mountain pine beetle (Dendroctonus ponderosae) outbreaks in western North American coniferous forests are increasing in size and severity. An understanding of wildlife population responses to pine beetle outbreaks is needed to inform habitat conservation strategies. We monitored 355 nests of 5 woodpecker species during 2 sampling periods, before (2003–2006) and after (2009–2014) the peak of a pine beetle outbreak in dry mixed conifer forest of Montana, USA. Three of 5 woodpecker species represented the beetle-foraging group: American three-toed (Picoides dorsalis), hairy (Dryobates villosus), and downy (D. pubescens) woodpeckers. The other 2 species studied were northern flicker (Colaptes auratus), a foraging and habitat generalist, and red-naped sapsucker (Sphyrapicus nuchalis), a sap forager and bark-gleaning insectivore. We analyzed daily survival rate of nests in relation to pine beetle outbreak (445,000 ha) severity and timing, along with covariates unrelated to the outbreak (temp, nest height, and nest tree diameter). Our results provided stronger evidence for relationships between woodpecker nest survival and the non-outbreak variables than those associated with outbreaks. Our results indicated limited support for nest survival relationships with beetle severity (annual and cumulative pine tree mortality at 0.81-ha and 314-ha scales). Nevertheless, we observed a significant increase in densities of hatched nests for beetle-foraging woodpeckers following the outbreak. Our results suggest that woodpeckers, particularly beetle foragers, respond numerically to pine beetle outbreaks through increased nesting densities more so than functionally via nest survival. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

8.
Rapid anthropogenic habitat changes can lead to non‐ideal habitat use by animals, often resulting in lower fitness and population declines. An extreme case of use and fitness mismatch is an ecological trap where habitat quality cues are disjointed from the true quality of the habitat. Species primarily associated with anthropogenically altered habitat, such as red‐headed woodpeckers (Melanerpes erythrocephalus), may be especially vulnerable to use and fitness mismatch as they encounter novel environmental challenges. We investigated multi‐scale habitat use and nesting success of red‐headed woodpeckers to assess their vulnerability to mismatches between use and fitness as a result of non‐ideal habitat use across multiple scales. We found that habitat characteristics that promote feeding potential such as canopy openness and greater dead limb length appeared paramount and were consistent in use across several spatial scales although reproductive fitness suffered. This contrasts with the assumption that habitat use by nesting birds should instead favor predation avoidance at smaller scales to improve reproductive fitness and suggests that maladaptive, food‐based habitat use by red‐headed woodpeckers in southern Ontario may result in ecological traps for the species. Whether due to poor habitat choices or costly ones in favor of feeding potential, it is vital to consider this behavior in conservation and management plans for this and similar species. We suggest multi‐scale habitat use studies that consider fitness outcomes are critical for species‐at‐risk in human‐modified landscapes.  相似文献   

9.
Despite its relevance for the persistence of populations, the ecological mechanisms underlying habitat use decisions of juvenile birds are poorly understood. We examined postfledging habitat selection of radio-tracked juvenile middle spotted woodpeckers Dendrocopos medius at multiple hierarchically-nested spatial scales in NW Spain. At the landscape and home range scales, old oak forest was the most used and selected habitat, young oak forests and pine plantations were avoided, and riverside forests were used as available. At a lower scale, birds selected larger diameter trees for foraging. Home ranges had higher densities of large deciduous trees (mainly oaks Quercus spp., but also poplars Populus spp. and willows Salix spp. >22  cm and >33  cm DBH) selected for foraging by juveniles than non-used areas. These results suggest that foraging conditions may drive, at least partly, habitat use decisions by juvenile birds. We also discuss the potential influence of intraspecific competition, the search for a future breeding territory in the early postfledging period and predation avoidance on habitat use decisions by juvenile birds. Contrary to previous studies on migrant forest birds, postfledging juvenile woodpeckers selected the same habitat as for the breeding adults (i.e. old oak forest), indicating that migrant and resident specialist avian species may require different conservation actions. Conservation strategies of woodpecker populations should consider the protection of old oak forests with high densities of large trees to provide suitable habitat to breeding adults and postfledging juveniles. The habitat improvement for this indicator and umbrella species would also favour other organisms that depend on characteristics of old-growth oak forests.  相似文献   

10.
Anthropogenic habitat loss and fragmentation affect populations worldwide. For example, many bird populations of boreal forests have declined due to intensive forestry. To target conservation actions for such species, determining the key factors that affect their habitat selection is essential. Remote sensing methods provide highly potential means to measure habitat variables over large areas. We aim at identifying the key‐features of habitats by utilizing remote sensing data. As a case example, we study the nest site selection of a primary hole‐nesting passerine, the willow tit Poecile montanus, in a managed forest landscape. Using presence–absence data, we determine the most important habitat characteristics of the nest sites for three spatial scales by generalized linear mixed effect models. Our results highlight the importance of the availability of nesting sites – standing decaying deciduous trees – in the nest site selection of P. montanus. It seems to prefer moist habitats with high densities of deciduous trees and to avoid open areas, but does not require mature or intact habitats. Most of the nest site selection seems to occur within small scales. In this case, remote sensing data alone was insufficient for producing reliable models, but adding information of an ecologically important feature from direct field surveys greatly improved model performances. For the conservation and maintenance of dead wood dependent species, changes in forestry practices are necessary to keep the key characteristics of the habitat. Most importantly, continuous availability of standing decaying wood should be secured.  相似文献   

11.
同域分布3种啄木鸟冬季取食的生态位差异   总被引:1,自引:0,他引:1  
戎可  司雨蕙  潘麒嫣  王欢 《生态学报》2018,38(23):8314-8323
为了掌握黑啄木鸟、三趾啄木鸟和大斑啄木鸟的冬季取食行为特征,特别是三者之间取食生态位的差异,于2016年1月5-13日,在黑龙江省凉水国家级自然保护区以样线法结合样方法对3种啄木鸟的取食生境和取食行为进行了系统调查,收集了15个生境和行为特征变量数据。共布设45条样线,484个对照样方,收集312组啄木鸟取食数据,其中黑啄木鸟73组,三趾啄木鸟97组,大斑啄木鸟142组。多变量回归树和多分类逻辑斯谛分析结果显示,3种啄木鸟在所调查的15项特征上存在显著分异。采用基于利用-可利用方法的Bailey''s方法和双因子方差分析,分别对3种啄木鸟的生境选择和行为特征进行分析,结果显示:黑啄木鸟和三趾啄木鸟偏好在郁闭度较高的原始云、冷杉林中取食,而大斑啄木鸟则随机地在各种林型、生境中取食。黑啄木鸟、三趾啄木鸟多在树干取食,黑啄木鸟更常在倒木上取食,而大斑啄木鸟则多在树冠层取食。黑啄木鸟基本只在主干上凿洞,其他两种特别是大斑啄木鸟则可以在侧枝上取食。与黑啄木鸟和大斑啄木鸟凿洞取食昆虫不同,三趾啄木鸟多通过扒去树皮获得食物。黑啄木鸟的取食树基本为死树,单树取食时间最长,大斑啄木鸟多在活树上取食,单树取食时间最短,经常更换取食树,而三趾啄木鸟的取食树则死活参半,单树取食时间也较长。黑啄木鸟的冬季取食行为节律表现为双峰形,日出后和日落前各有一个活动高峰,其他两种则于白天持续取食。3种啄木鸟取食生境和行为生态位的差异,使它们能够更有效地利用有限的食物资源,共存于同一森林。  相似文献   

12.
Evaluating habitat suitability is often complex, as habitat effects may be scale‐dependent, critical resources may be spatially segregated, and resource availability may also depend on intra‐ and inter‐specific interactions. Using analyses that spanned multiple years and spatial scales, we investigated habitat requirements of a territorial generalist, the common raven Corvus corax, in a relatively pristine woodland, Bia?owie?a Forest (E Poland). We compiled data from multiple raven surveys conducted between 1985 and 2001. Ravens were regularly distributed over the entire study area but declined in density over 50% within the 16 yr interval. In the same period game and forest management significantly reduced ungulate densities and likely diminished the habitat quality with regard to food supply, especially carrion. To better understand habitat requirements of ravens we studied breeding performance in relation to three different habitat types across multiple scales: open areas, coniferous‐dominated forest, and deciduous‐dominated forest. We found a prominent dissimilarity between raven nesting and foraging habitats highlighting the importance of resource complementation for ravens. On a fine scale, large old pines were exclusively selected as nesting trees and nesting areas were generally coniferous‐dominated. However, at increasingly broader scales, coniferous habitats were negatively associated with raven reproductive success as those habitats likely provide a lower food supply. Only where the coniferous nesting areas at smaller scales were complemented with high percentages of deciduous forests and open areas at broader scales did the breeding performance increase. In addition to habitat composition, intra‐specific interactions were important determinants of reproductive performance and very successful neighbors decreased reproductive performance of a focal pair. Most of previous studies have investigated resource complementation in terms of habitat edges or proximity of complementing resource patches. Our study demonstrates that the concept of landscape complementation also applies to gradients in landscape composition and emphasizes the importance of scales and intraspecific interactions in habitat analyses.  相似文献   

13.
ABSTRACT The hairy woodpecker (Picoides villosus) is a keystone species in forest ecosystems of Washington, USA, providing nesting and roosting cavities for many species of wildlife. Therefore, management practices that promote healthy populations of this bird will help to conserve cavity-nesting communities as a whole. The objective of this study was to determine patterns in forest type and landscape use by hairy woodpeckers, and thus, provide landscape-level recommendations to forest managers. We documented the ranging patterns and habitat use of 23 hairy woodpeckers on the Olympic Peninsula using radiotelemetry and a Geographic Information System analysis. Use patterns of stand age, type, and size, as well as distance-from-edge analyses revealed that the hairy woodpecker is a relative generalist in its use of the managed forest landscape. However, certain features, such as older stands with large trees, were used more heavily by nesting pairs. Hairy woodpeckers used 61–80-year forest stands significantly (P < 0.05) more than expected relative to their availability within the birds' home ranges. We also documented significant underuse of 6–10-year and 11–20-year stands, whereas the birds used 41–60-year stands, >80-year stands, and clear-cuts (< 5 yr) equivalent to their availability. We suggest that hairy woodpeckers select older stands with larger, dying trees for foraging, but also use clear-cuts proportionally due to the residual snags, decaying trees, and remnant dead wood available. Higher use (P < 0.001) by hairy woodpeckers of small forest patches (0–5 ha) and intermediate-sized stands (5–30 ha) than large patches (>30 ha) may be a result of the older, higher-quality habitat available in small stands in the managed forest landscape. We recommend that land managers interested in maintaining healthy managed forest ecosystems with a full complement of cavity-using species in forests of western Washington and northwestern Oregon maintain a landscape mosaic with approximately 45% of the landscape in stands >40 years, and >30% of the landscape in stands >60 years.  相似文献   

14.
The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality; this may act to decrease long-term viability. In this study we set out to explore genetic diversity among cougar populations in the Black Hills and surrounding areas. Specifically, our objectives were to first compare genetic variation and effective number of breeders of cougars in the Black Hills during three harvest regimes: pre (2003–2006), moderate (2007–2010), and heavy (2011–2013), to determine if harvest impacted genetic variation. Second, we compared genetic structure of the Black Hills cougar population with cougar populations in neighboring eastern Wyoming and North Dakota. Using 20 microsatellite loci, we conducted genetic analysis on DNA samples from cougars in the Black Hills (n = 675), North Dakota (n = 113), and eastern Wyoming (n = 62) collected from 2001–2013. Here we report that the Black Hills cougar population maintained genetic variation over the three time periods. Our substructure analysis suggests that the maintenance of genetic variation was due to immigration from eastern Wyoming and possibly North Dakota.  相似文献   

15.
Success of species conservation depends to a large extent on comprehensive management that considers all critical aspects of a species’ niche. Many studies have examined habitat factors in relation to occurrence, abundance or foraging behaviour of European woodpecker species, while relatively little is known about nest site selection. I compared habitat structures used for nesting by middle and great spotted woodpeckers Dendrocopos medius and D. major with available structures in an oak forest in the Swiss lowlands. I first tested if nest trees were randomly selected among available trees by focusing on species, condition and diameter of nest trees, and on the presence of the fruiting body (hereafter sporophore) of polypores (wood-decomposing fungi). Second, I examined if the nesting niches of the two species were differentiated. Both species showed strong preferences for oaks, large trees, dead trees and for trees with sporophores. Nest sites of the two species differed most strongly with respect to the presence of sporophores, cavity age and tree condition, pointing towards interspecific competition for nest sites. Old living or dead trees with sporophores are central components of the nesting niche of middle and great spotted woodpeckers. Conservation plans for the threatened middle spotted woodpecker have so far mostly focused on the needs in terms of distribution and foraging; future conservation strategies and forest management must take into account the preference for dead and decaying trees with sporophores as another vital resource. This will also provide benefits for other woodpecker species as well as for the community of secondary cavity nesters.  相似文献   

16.
Although examples are rare, conflicts between species of conservation concern can result from habitat restoration that modifies habitat to benefit a single taxon. A forest restoration program designed to enhance habitat for endangered red‐cockaded woodpeckers (Picoides borealis) may be reducing available habitat for the eastern spotted skunk (Spilogale putorius), a forest‐adapted sympatric species of conservation concern that occurs in the Ouachita National Forest, Arkansas, U.S.A. At small scales, eastern spotted skunks select early successional forest with structural diversity, whereas red‐cockaded woodpeckers prefer mature pine (Pinus spp.) habitat. We surveyed for eastern spotted skunks at 50 managed forest stands, modeled occupancy as a function of landscape‐level habitat factors to examine how features of restoration practices influenced occurrence, and compared known occupied forest stands to those where active red‐cockaded woodpecker nesting clusters were located. The most‐supported occupancy models contained forest stand age (negatively associated) and size (positively associated); suggesting eastern spotted skunks primarily occupy large patches of habitat with dense understory and overhead cover. Red‐cockaded woodpecker nesting clusters were located in smaller and older forest stands. These results suggest that increased overhead cover, which can reduce risk of avian predation, enhances occupancy by small forest carnivores such as eastern spotted skunks. Management activities that increase forest stand rotation length reduce the availability of young dense forest. The practice may enhance the value of habitat for red‐cockaded woodpeckers, but may reduce the occurrence of eastern spotted skunks. Implementing plans that consider critical habitat and extinction risks for multiple species may reduce such conservation conflict.  相似文献   

17.
The cost of brood parasitism favors the evolution of host behaviors that reduce the risk or expense of being parasitized. Endangered Black‐capped Vireos (Vireo atricapilla) have likely coexisted with brood‐parasitic Brown‐headed Cowbirds (Molothrus ater) for more than 10,000 yr, so it is likely that they have evolved anti‐parasitic behaviors. We monitored naturally parasitized and non‐parasitized vireo nests to evaluate factors that might explain parasitism risk and nest desertion behavior and also assessed whether behaviors that occurred after being parasitized improved reproductive output. Vireos reduced the risk of parasitism by initiating breeding early and nesting farther from open grasslands and edges of woody thickets. Post‐laying, nest desertion was common (70% of parasitized nests) and increased with both the presence of at least one cowbird egg in nests and clutch reduction by cowbirds. After accounting for these cues, desertion was also more likely at nests located closer to cowbird foraging habitat and below potential cowbird vantage points. Despite its regularity, desertion did not appear to provide reproductive benefits to vireos. Instead, accepting cowbird eggs was a more effective strategy because 42% of cowbird eggs did not hatch. Furthermore, cowbird eggs were somehow ejected from at least three vireo nests. Our results suggest that Black‐capped Vireos can behave in a variety of ways that reduce the impact of brood parasitism, with frontline behaviors appearing to provide the greatest benefit. Our results also suggest that habitat management should focus on providing Black‐capped Vireos with adequate breeding habitat that provides access to safe nesting sites, and with high‐quality wintering habitat that allows vireos to migrate and initiate nesting early.  相似文献   

18.
19.
Pilot studies are often used to design short‐term research projects and long‐term ecological monitoring programs, but data are sometimes discarded when they do not match the eventual survey design. Bayesian hierarchical modeling provides a convenient framework for integrating multiple data sources while explicitly separating sample variation into observation and ecological state processes. Such an approach can better estimate state uncertainty and improve inferences from short‐term studies in dynamic systems. We used a dynamic multistate occupancy model to estimate the probabilities of occurrence and nesting for white‐headed woodpeckers Picoides albolarvatus in recent harvest units within managed forests of northern California, USA. Our objectives were to examine how occupancy states and state transitions were related to forest management practices, and how the probabilities changed over time. Using Gibbs variable selection, we made inferences using multiple model structures and generated model‐averaged estimates. Probabilities of white‐headed woodpecker occurrence and nesting were high in 2009 and 2010, and the probability that nesting persisted at a site was positively related to the snag density in harvest units. Prior‐year nesting resulted in higher probabilities of subsequent occurrence and nesting. We demonstrate the benefit of forest management practices that increase the density of retained snags in harvest units for providing white‐headed woodpecker nesting habitat. While including an additional year of data from our pilot study did not drastically alter management recommendations, it changed the interpretation of the mechanism behind the observed dynamics. Bayesian hierarchical modeling has the potential to maximize the utility of studies based on small sample sizes while fully accounting for measurement error and both estimation and model uncertainty, thereby improving the ability of observational data to inform conservation and management strategies.  相似文献   

20.
The western distinct population segment of yellow-billed cuckoo (Coccyzus americanus; western cuckoo) has been extirpated from most of its former breeding range in the United States because of widespread loss and degradation of riparian cottonwood (Populus spp.)-willow (Salix spp.) forests. Restoration and management of breeding habitat is important to the recovery of this federally threatened species, and identification of high-quality breeding habitat can help improve the success of recovery. In 2005, the Lower Colorado River Multi-Species Conservation Program, a long-term, multi-agency effort, was initiated to maintain and create wildlife habitat within the historical floodplain of the lower Colorado River (LCR) for federally endangered and threatened species, including western cuckoos. We conducted an empirical, multi-scale field investigation from 2008–2012 to identify habitat characteristics selected by nesting western cuckoos along the LCR. Multiple logistic regression models revealed that western cuckoos selected nest sites characterized by increased densities of small, native, early successional trees measuring 8–23 cm diameter at breast height, and lower diurnal temperature compared to available habitat in restoration and natural forests. Nesting cuckoos selected sites with increased percent canopy closure, which was also important for nest success in restoration sites along the LCR. Our results show habitat components selected by nesting western cuckoos in restoration and natural riparian forests and can help guide the creation, enhancement, and management of riparian forests with habitat conditions necessary to promote nesting of western cuckoos. © 2021 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号