首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 562 毫秒
1.
以'新泰密刺'黄瓜为材料,采用营养液栽培方法,对根际低氧胁迫下黄瓜幼苗根系SOD、POD和CAT同工酶进行了分析.结果显示,与对照相比,单纯低氧胁迫处理的黄瓜幼苗根系SOD和CAT同工酶活性先降低再升高, 而POD同工酶活性则持续升高;营养液增施4 mmol·L-1 CaCl2明显缓解了低氧胁迫对黄瓜植株的伤害, 其SOD、POD和CAT同工酶活性接近对照水平;与单纯低氧胁迫相比,营养液增施50 μmol·L-1 LaCl3显著抑制了幼苗根系SOD、POD和CAT同工酶活性的升高;营养液增施20 μmol·L-1三氟拉嗪(TFP)引起植株根系SOD、POD和CAT同工酶表达量的剧烈波动,随胁迫时间的延长SOD和CAT同工酶均先迅速升高后又迅速降低,而POD同工酶活性则迅速降低.研究表明,外源Ca2+增加了Ca2+向黄瓜植株体内的运输,促进了低氧逆境胁迫信号向体内的传递,提高了根系保护酶的表达量及其活性氧清除水平,从而增强了黄瓜植株耐低氧胁迫的能力.  相似文献   

2.
Ca2+对低氧胁迫下黄瓜幼苗生长和根系无氧呼吸酶的影响   总被引:5,自引:2,他引:3  
采用营养液水培,以抗低氧能力不同的2个黄瓜品种为试材,研究了Ca2+对黄瓜幼苗植株生长和根系无氧呼吸酶活性的影响.结果表明,在低氧胁迫下,LDH、PDC和ADH活性提高程度与幼苗的抗低氧性和Ca2+浓度密切相关.与抗低氧性较弱的"中农8号"相比,抗低氧性强的"绿霸春4号"幼苗根系LDH活性增加缓慢,而PDC和ADH活性增加幅度较大,因此增强了植株对低氧胁迫的抗性.低氧胁迫下,营养液中8 mmol·L-1 Ca2+处理能显著提高根系ADH活性,降低LDH和PDC活性,0 mmol·L-1 Ca2+处理表现出相反的规律.由此可以说明,低氧胁迫下,Ca2+能够提高ADH活性,降低LDH和PDC活性,可增强黄瓜植株对低氧胁迫的抗性.  相似文献   

3.
采用营养液水培,研究了低氧胁迫下24-表油菜素内酯(EBR)对黄瓜幼苗根系生长及其无氧呼吸同工酶表达的影响.结果表明:低氧胁迫增强了黄瓜幼苗根系丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)、乳酸脱氢酶(LDH)同工酶的表达,低氧胁迫下施用外源EBR的第3天PDC、ADH同工酶的表达量分别提高了18.8%、28.8%,而第6、第9天PDC、ADH、LDH同工酶的表达减弱,比单纯低氧处理分别降低19.5%、25.6%、53.4%及26.4%、26.0%、28.4%;低氧胁迫至第9天,黄瓜幼苗根系的生长受到了显著抑制(P<0.05),而低氧胁迫下施用EBR,黄瓜幼苗根系的生长受抑制程度减轻,其根系总长、干重、根尖数较单纯低氧处理显著增加(P<0.05),低氧抑制了黄瓜幼苗根系的生长,低氧胁迫下营养液添加EBR可调节黄瓜根系无氧呼吸同工酶的表达,缓解低氧胁迫对黄瓜幼苗根系的伤害.  相似文献   

4.
采用营养液栽培,研究了外源腐胺(Put)对根际低氧胁迫下黄瓜幼苗体内多胺含量和抗氧化系统的影响.结果显示,低氧胁迫显著刺激了黄瓜幼苗体内活性氧(ROS)和内源多胺含量的增加,提高了抗氧化酶活性;外源Put进一步提高了低氧胁迫下黄瓜幼苗体内多胺的含量和抗氧化酶活性,降低了ROS含量,从而缓解了低氧胁迫的伤害作用;Put合成抑制剂D-精氨酸(D-Arg)不仅显著抑制黄瓜幼苗体内多胺的合成,而且抑制抗氧化酶活性,同时ROS大量积累,进一步抑制黄瓜幼苗的生长;而外源Put可缓解D-Arg的抑制作用;Put转化抑制剂甲基乙二醛-双(脒基腙)(MGBG)和Put降解抑制剂氨基胍(AG)的混合施用造成游离态Put的过量积累,以及亚精胺(Spd)、精胺(Spm)含量和抗氧化酶活性的显著降低,造成ROS大量积累,进一步加重了低氧胁迫对植株的伤害.结果表明,低氧胁迫下外源Put可提高黄瓜幼苗体内游离态Put含量,促进游离态Put向Spd和Spm转化,Spd、Spm含量的增加以及(free-Spd free-Spm)/free-Put比值的升高有利于提高植株抗氧化酶活性,增强清除ROS的能力,降低膜脂过氧化的伤害,从而增强植株的低氧胁迫耐性.  相似文献   

5.
采用营养液水培,研究了根际低氧胁迫下外源亚精胺对2个抗低氧能力不同的黄瓜品种(‘中农八号’和‘绿霸春四号’)根系中多胺含量和呼吸代谢相关酶活性的影响.结果表明,单纯低氧处理下,黄瓜幼苗根系中腐胺、亚精胺和精胺含量显著提高,异柠檬酸脱氢酶(IDH)和琥珀酸脱氢酶(SDH)活性显著降低,乳酸脱氢酶(LDH)、乙醇脱氢酶(ADH)和丙酮酸脱羧酶(PDC)活性显著提高.同时,与抗低氧能力弱的‘中农八号’相比,抗低氧能力强的‘绿霸春四号’根系LDH活性增加幅度较低,ADH活性增加幅度较高,IDH和SDH活性降幅也较小;外源亚精胺能显著提高低氧胁迫下黄瓜幼苗根系中亚精胺和精胺含量,降低腐胺含量;根系中LDH、ADH和PDC活性降低,IDH和SDH活性升高,说明黄瓜幼苗根系中较高的亚精胺、精胺含量可能有利于提高根系有氧呼吸能力,缓解低氧胁迫对植株的伤害.  相似文献   

6.
用营养液水培,研究了根际低氧胁迫下24-表油菜素内酯(EBR)对2个抗低氧能力不同的黄瓜品种根系中抗氧化系统及无氧呼吸酶活性的影响。结果表明,在低氧胁迫下,EBR处理显著提高了低氧胁迫下2品种黄瓜幼苗根系SOD、POD及ADH活性,降低了O2-·、H2O2和MDA含量、LDH活性及‘中农八号’根系PDC活性,而对‘绿霸春四号’根系PDC及2个品种CAT活性无明显影响,表明外源EBR处理通过促进低氧胁迫下根系中抗氧化酶和ADH活性的提高,降低LDH活性及ROS含量,增强植株抗低氧胁迫的能力。  相似文献   

7.
钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响   总被引:6,自引:5,他引:1  
采用营养液栽培系统,以黄瓜品种中农8号为材料,研究了Ca2 对根际低氧胁迫下黄瓜幼苗体内超氧阴离子(O2?-)、过氧化氢(H2O2)、丙二醛(MDA)含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱苷肽还原酶(GR)活性的影响.结果表明:低氧胁迫下黄瓜体内活性氧含量和保护酶活性均高于对照;低氧缺钙处理的活性氧含量最高,而保护酶活性却较低;营养液Ca2 浓度提高到8mmol/L后,显著降低了低氧胁迫下黄瓜幼苗体内MDA、H2O2含量和O?2-产生速率,提高了SOD、POD、CAT、APX、GR活性,说明Ca2 可减少低氧胁迫下黄瓜幼苗体内活性氧的产生,提高抗氧化酶的活性、降低膜脂过氧化水平,减缓低氧胁迫对植株的伤害,增强黄瓜幼苗对低氧逆境的适应性.  相似文献   

8.
低氧胁迫对黄瓜幼苗根系无氧呼吸酶和抗氧化酶活性的影响   总被引:14,自引:1,他引:13  
对两个抗低氧胁迫能力不同的黄瓜品种进行营养液水培,研究了低氧胁迫下植株根系中无氧呼吸酶和抗氧化酶活性的变化。结果表明,低氧胁迫下,黄瓜植株生长受到抑制,鲜重和干重显著降低,根系中蛋白质含量降低,而根系中乳酸脱氢酶(LDH)、丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性在低氧胁迫下显著提高,且提高的幅度与品种抗低氧胁迫能力的强弱有关,与“中农8号”相比,抗低氧性胁迫能力较强的“绿霸春四号”根系内LDH活性增幅较小,而ADH、PDC、SOD、POD和CAT活性增幅较大。说明较高的ADH、PDC、SOD、POD、CAT活性和较低的LDH活性有利于增强幼苗植株抗低氧胁迫的能力。  相似文献   

9.
采用营养液水培方式,研究了根际低氧胁迫下外源多胺对黄瓜幼苗植株根系生长,内源多胺含量与质膜H -ATP酶、液泡膜H -ATP酶和焦磷酸酶活性的影响.结果表明,根际低氧胁迫显著抑制黄瓜幼苗根系的生长,外源Put(腐胺)和Spd(亚精胺)可缓解低氧胁迫对根系的生长抑制,多胺主要以Spd的形式发挥促进性的生理作用,Put通过转化为Spd发挥作用;低氧胁迫下黄瓜根系内源多胺含量略有提高,外源多胺处理可增加内源多胺的含量;低氧胁迫下外源Put和Spd处理后质膜H -ATP酶活性显著提高,外源多胺对黄瓜根系液胞膜H -ATP酶和H -焦磷酸酶活性没有明显影响,说明低氧胁迫下外源多胺主要通过提高质膜H -ATP酶活性而发挥生理作用.  相似文献   

10.
采用营养液水培法,研究了根际低氧胁迫下D-精氨酸(D-Arg)对两个抗低氧能力不同的黄瓜品种根系中多胺含量和无氧呼吸代谢的影响.结果表明,低氧处理下,黄瓜幼苗根系中多胺含量显著增加,无氧呼吸代谢能力提高;与抗低氧能力弱的‘中农八号’相比,抗低氧能力强的‘绿霸春四号’根系中乙醇发酵活性较高,乳酸发酵活性较低;低氧胁迫下,D-精氨酸能显著降低黄瓜幼苗根系中腐胺、亚精胺和精胺含量,根系中乙醇脱氢酶(ADH)和乳酸脱氢酶(LDH)活性增加,乙醇和乳酸含量升高,植株生长受到抑制,而外源腐胺能缓解D-精氨酸的这种作用.说明黄瓜幼苗根系中较高的多胺含量可能有利于缓解低氧胁迫对植株造成的伤害.  相似文献   

11.
Seedlings of lupine (Lupinus luteus L. cv. Juno) were exposed for up to 96 hours to 1 to 2 kPa partial pressure oxygen (hypoxic treatment) and activities of alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) and their isoform profiles were determined. Roots of lupine seedlings were grown in a nitrogen flushed nutrient solution while their shoots were in air. Prolonged hypoxia led to a reduction of root elongation. This was accompanied by reduced increase in dry weight suggesting that insufficient carbohydrate supply was the cause of retarded growth of lupine roots. Hypoxically treated roots showed induction of ADH and LDH acivities. The maximum increase in LDH activity was low (2-fold) in contrast to ADH activity, which increased up to 7-fold. Hypoxic treatment of roots did not affect the activities of ADH and LDH in hypocotyls and cotyledons. Analysis of ADH and LDH activity gels indicated in roots 1 and 2 isoforms, respectively. The level of isozymes of both enzymes increased in roots upon exposure to hypoxic stress. Differences in isoenzymatic spectrum of ADH and LDH between roots, hypocotyls and cotyledons indicate organ specificity of isozymes of both enzymes. The importance of alcohol and lactate fermentation in roots to cope with hypoxic stress is discussed.  相似文献   

12.
Alcohol dehydrogenase (ADH; EC 1.1.1.1) activity was measured in Picea glauca (Moench) Voss cell suspensions under differing conditions of hypoxia. ADH activity increased 4.5 fold after 48 h of induction. When cells were induced under different levels of hypoxia (2, 5 and 20% O2) changes in ADH activity were found to increase with lower levels of oxygen. Alanine aminotransferase (AlaAT; EC 2.6.1.2) activity increased under hypoxia in a pattern similar to ADH, however lactate dehydrogenase (LDH; EC 1.1.1.27) activity did not increase under hypoxic conditions. The ability of white spruce cells to accurately regulate heterologous anaerobic promotors was tested by electroporating chimeric ADH reporter genes into protoplasts. While protoplasts were capable of anaerobically regulating a maize ADH reporter construct, constructs with dicotyledonous promoters (pea and Arabidopsis ) were not expressed.  相似文献   

13.
Akhtar  J.  Gorham  J.  Qureshi  R.H.  Aslam  M. 《Plant and Soil》1998,201(2):275-284
The effects of NaCl salinity (100 or 150 mol m-3) and hypoxia on seedlings of several wheat varieties (Lyallpur-90, SARC-1, Pato, Tchere, Pb-85, Siete Cerros, Chinese Spring and a Chinese Spring × Thinopyrum elongatum amphidiploid) were studied in solution culture. In vivo studies of activities of different enzymes (alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) and cytochrome oxidase (COase)) extracted from Pato and Pb-85 included the effect of salinity with and without hypoxia, while during in vitro studies, NaCl, glycinebetaine and proline were added to the assay mixture. The extent of aerenchyma formation was also determined in Pato, Chinese Spring and a Chinese Spring × Thinopyrum elongatum amphidiploid. Imposition of hypoxia greatly induced ADH and LDH activity in roots of wheat seedlings after a week-long exposure. However, exposure of roots to salinity also slightly increased LDH and ADH activity compared with the non-saline control. On a relative basis, Pato had higher ADH activity under hypoxic (21×) or saline-hypoxic stress (20×) than in aerated conditions. Hypoxia alone or in the presence of salts decreased COase activity in both Pato and Pb-85. The in vitro studies revealed that NaCl (on an equimolar basis at up to 500 mol m-3) is more disruptive than glycinebetaine or proline. LDH was more sensitive to NaCl than ADH. Aerenchyma development was higher near the root-shoot interface compared to near the root tip. Salinity under hypoxic conditions significantly reduced aerenchyma development near the root tip and root-shoot interface compared to hypoxia alone. Neither enzyme activity nor aerenchyma formation could account for varietal differences in tolerance to hypoxia alone or in combination with salinity.  相似文献   

14.
To elucidate the relationship between polyamines and anaerobic respiration of wheat (Triticum aestivum L.) seedling root under water-logging stress, the contents of polyamines (PAs), lactate and alcohol, and the activities of anaerobic respiration enzymes were investigated in seedling roots of two wheat cultivars, Yumai no. 18 and Yangmai no. 9. On the 5th day after water-logging treatment, spermidine (Spd) and spermine (Spm) contents increased significantly, pyruvate decarboxylase (PDC) activity increased and there was no difference between two cultivars. Alcohol dehydrogenase (ADH) activity and alcohol content in Yangmai no. 9 increased more markedly than Yumai no. 18, while lactate dehydrogenase (LDH) activity and the lactate content in the Yumai no. 18 increased more markedly than Yangmai no. 9. Treatments with exogenous Spd and Spm resulted in enhancing the increases in ADH activity, alcohol content, and the levels of Spd and Spm. This concomitantly inhibited the increases in LDH activity and lactate content in Yumai no. 18 under water-logging stress, alleviating stress-induced injury to the seedlings. Treatment with exogenous inhibitor methylglyoxyl-bis-guanylhydrazone (MGBG), resulted in reducing the increases in ADH activity, alcohol content, and Spd and Spm levels, promoting the increases in LDH activity and lactate content in Yangmai no. 9 under water-logging stress, and aggravating the stress-induced injury to the seedlings. The results suggested that under water-logging stress, increased Spd and Spm could facilitate the tolerance of wheat seedling to the stress by enhancing the increases in ADH activity and alcohol content, and inhibiting the increases in LDH activity and lactate content.  相似文献   

15.
The effects of exogenous spermidine (Spd) application to hypoxic nutrient solution on the contents of endogenous polyamines (PAs) and respiratory metabolism in the roots of cucumber (Cucumis sativus L.) seedlings were investigated. Cucumber seedlings were grown hydroponically in control and hypoxic nutrient solutions with and without addition of Spd at a concentration of 0.05 mM. The activities of key enzymes involved in the tricarboxylic acid cycle (TCAC), such as succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), were significantly inhibited under root-zone hypoxia with dissolved oxygen (DO) at 1 mg/l. In contrast, the activities of enzymes involved in the process of fermentation, such as pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and alanine aminotransferase (AlaAT), were significantly increased. Thus, aerobic respiration was inhibited and fermentation was enhanced in the roots of cucumber seedlings as a result of decreasing ATP content to inhibit the dry weight of seedlings under hypoxic stress. Moreover, the contents of free, soluble conjugated, and insoluble bound putrescine (Put), Spd, and spermine (Spm) in the roots of cucumber seedlings were significantly increased under hypoxia stress. Interestingly, application of Spd to hypoxic roots markedly suppressed the accumulation of free Put and, in contrast, promoted an increase in free Spd and Spm, as well as soluble conjugated and insoluble bound Put, Spd, and Spm contents. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated and insoluble bound PAs under hypoxia stress. Furthermore, the activities of LDH, PDC, and ADH were suppressed and, in contrast, the activities of SDH and IDH were enhanced by application of exogenous Spd to hypoxic roots. As a result, aerobic respiration was enhanced but fermentation metabolism was inhibited in the roots of cucumber seedlings, leading to an increase in ATP content to alleviate the inhibited dry weight of seedlings due to hypoxia stress. These results suggest that application of Spd to hypoxic nutrient solution promoted conversion of free Put into free Spd and Spm as well as soluble conjugated and insoluble bound PAs, further enhanced IDH and SDH activities, and inhibited ethanol fermentation and lactate fermentation, resulting in increased ATP content and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

16.
根际低氧胁迫对黄瓜幼苗根系呼吸代谢的影响   总被引:3,自引:0,他引:3  
采用营养液栽培方法,研究了低氧胁迫对两个耐低氧能力不同的黄瓜品种根系呼吸代谢的影响.结果表明:低氧胁迫下,两个黄瓜品种根系三羧酸循环显著受阻,无氧呼吸代谢被促进.与耐低氧能力较弱的中农8号相比,耐低氧能力较强的绿霸春4号根系琥珀酸脱氢酶和异柠檬酸脱氢酶活性的降低幅度较小,乳酸脱氢酶活性、乳酸和丙酮酸含量的增加幅度较小,而丙酮酸脱羧酶、乙醇脱氢酶活性及乙醇、丙氨酸含量的增加幅度较大;低氧胁迫8 d时,与相应对照相比,绿霸春4号根系乙醇脱氢酶活性及乙醇和丙氨酸含量分别增加了409.30%、112.13%和30.64%,中农8号根系分别增加了110.42%、31.84%和4.78%,这是两个黄瓜品种耐低氧能力差异的主要生理原因.两品种幼苗根系丙氨酸氨基转移酶活性和乙醛含量没有显著差异.表明低氧胁迫下黄瓜根系乙醇发酵代谢途径的增强和丙氨酸的积累有利于防御低氧伤害.  相似文献   

17.
The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号