首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of retroviral vectors for human gene therapy requires the production of large quantities of high titer vector stocks. Maintaining high titers during the prolonged culture of packaging cells will require that critical parameters be controlled. The aim of this study was to determine which culture parameters critically affect the production/decay of retroviral vectors produced by the human packaging cell line FLYRD18/LNC-hB7. The stability of retroviral vectors released by this cell line was found to be temperature dependent (half-life of 6.9, 11.0, and 64.3 h when incubated at 37, 32, and 0 degrees C, respectively). Titers increased up to 10-fold when the packaging cells were cultured at 32 degrees C, compared to 37 degrees C, despite a decrease in cell yield (cell-specific titers were 20-fold higher). Virus titers were also over 10-fold higher when the packaging cells were cultured in a reduced serum concentration (1%) compared to 5%. Retrovirus production at a range of pH levels revealed a significant decrease in virus titer at pH levels below 6.8 and above 7.2, optimum titers being achieved in cultures at pH 7.2. Dissolved oxygen levels in the range 20-80% did not significantly affect titers under the conditions tested. Finally, a packed bed system containing the packaging cells immobilized on porous microcarriers was shown to sustain the production of active retroviral vectors for over 1 month, in relatively large volumes.  相似文献   

2.
The titer of retroviral vectors can be increased by cocultivation of retrovirus packaging cells that produce a vector with packaging cells having a different host range. Multiple rounds of infection occur in such cultures, producing an amplification of vector copy number and titer. Production of a vector with a very high titer of over 10(10) CFU per ml of conditioned medium has been reported, although replication-competent helper virus was also present. Since helper-free virus is a requirement for many applications of retroviral vectors, we repeated this procedure with a modified vector and achieved a 2- to 10-fold amplification of vector titer in the absence of helper virus, up to 2 x 10(7) CFU/ml. We have also repeated these experiments with the same vector and methods described previously or have assayed virus from the high-titer vector-producing cell line reported previously and observed maximum titers of 10(8) CFU/ml, invariably accompanied by helper virus. Thus, while amplification of vector titer in the absence of helper virus is possible, some unexplained difference in the assays for virus titer must account for our inability to obtain the exceptionally high vector titers that were reported previously.  相似文献   

3.
To indentify a plausible large-scale production system forretroviral vector, three culture systems, i.e., batch culturewith medium exchange, microcarrier culture, and packed-bedreactor culture were compared. In batch cultures with mediumexchange, high cell concentrations were maintained for about amonth, and the harvested retroviral titer remained constant. Inmicrocarrier cultures, although cell growth was rapid, theretroviral titer was unexpectedly low, suggesting that the lowtiter was due either to serious damage to the retroviral vectoror to a reduction in the production rate of retroviral vector,caused by mechanical shear forces. Although the retroviral titer(maximum titer, 1.56 × 106) in the packed-bedreactor was a little bit lower than that obtained in the batchculture with medium exchange (maximum titer, 1.91 ×106), continuous production made it possible to increasethe cumulative titer up to 16-fold of that from the batchculture with medium exchange. Moreover, as the packed-bedreactor system requires less labor and shows excellentvolumetric productivity in comparison to batch cultures withmedium exchanges, it will be an appropriate production systemfor retroviral vector in large quantities.  相似文献   

4.
5.
Recombinant retroviruses are now an established tool for gene delivery. Presently they are mainly produced using adherent cells. However, due to the restrictive nature of adherent cell culture, this mode of production is hampered by low cell-specific productivity and small production units. The large-scale production of retroviral vectors could benefit from the adaptation of retrovirus packaging cell lines to suspension culture. Here, we describe the ability of a 293 packaging cell line to produce retroviral vectors in suspension culture at high titer. Adherent 293GPG cells, producing a Moloney Murine Leukemia Virus (MoMLV) retrovirus vector pseudotyped with the vesicular stomatitis virus G (VSVG) envelope protein and expressing a TK-GFP fusion protein, were adapted to suspension culture in calcium-free DMEM. At a cell density similar to adherent cell culture, the suspension culture produced retroviral vector consistently in the range of 1 x 10(7) infectious viral particles/mL (IVP/mL), with a specific productivity threefold higher than adherent culture. Furthermore, at the same medium replacement frequency, the suspension producer cells could be cultured at higher density than their adherent counterparts, which resulted in virus titer of 3-4 x 10(7) IVP/mL at 11.0 x 10(6) cells/mL. This corresponds to a 10-fold increase in viral concentration compared to adherent cells. The capacity to up scale the retroviral vector production was also demonstrated by performing a 2 VVD perfusion culture for 9 days in a 3L Chemap bioreactor. The combination of suspension and perfusion led to a 20-fold increase in maximum virus productivity compared to the adherent culture.  相似文献   

6.
The development of gene therapy is hampered by the difficulty of producing large stocks of retroviral vectors at high titer. This study aimed to improve culture conditions and to intensify the production of retroviruses by FLYRD18, a packaging cell line derived from the HT1080 human fibrosarcoma line. Batch virus production proved to be feasible in unsupplemented basal medium and provided significantly higher titers and productivities than medium supplemented with 10% serum. For longer-term production, however, AIM-V complete serum-free medium and basal medium supplemented with 2% serum gave superior results. Serum supplementation should nevertheless be optimized to take into account the presence of inhibitors of viral production. In monolayer cultures with 0.2 mL/cm(2), the cell concentration was increased up to 2 x 10(6) cells/mL without loss of cell productivity. A semicontinuous production process, which enables the collection of larger amounts of viruses from the same culture, has also been successfully used. Suspension culture processes were prevented by the anchorage dependency of the FLYRD18 cell line. Microcarrier cultures were able to produce viruses but will require further investigation and optimization for their performance to become competitive with monolayer cultures. In the course of this study, more than a 10-fold increase of titer has been achieved.  相似文献   

7.
Certain steps from the production to infection of the amphotrophic retroviral vector, MFG-LacZ, were optimized and the factors that affect retroviral titers were analyzed. Retroviral vector titers were highest when the culture supernatant was harvested 3 days after the producer cells had reached confluence. About a 2-fold increase in vector production was achieved at 32°C compared to that at 37°C. Low serum concentrations had no significant effect on the titers of virus produced by the CRIP cell line. Retroviral vectors were stable at 4°C but very unstable at 37°C and were quite sensitive to freezing and thawing. About 30%–50% of viral infectivity was lost during the thawing step and the loss was not recovered by the addition of commonly used cryoprotectants. Increase in viral exposure time for infection to target NIH3T3 cells was linearly proportional to the retroviral titer for up to 15 h. In addition, using DEAE-dextran in place of polybrene as a polycation during infection enhanced infection efficiency about 3-fold. The retrovirus was robust to simple ultrafiltration and its titer could be easily concentrated 16-fold. Taken together, our data suggest that at least a 100-fold increase in titer can be achieved with simple optimization.  相似文献   

8.
Because of the low titer of retroviral supernatant, it is necessary to develop and optimize large-scale retroviral production systems. To quantitatively determine the effect of a given operating condition (e.g., temperature and serum content) on producer cells' retrovirus-producing capacity, a mathematical model was used to analyze the static retroviral production system described by three processes: viral diffusion, decay, and generation. The analytical solutions of the defined model equations were fitted with experimental data to determine the specific retroviral production rate constant, which represents the competence of a retroviral production system. Two different retroviral production systems, inducible production of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped retrovirus from 293GPG/EGFP cells and constant production of ecotropic retrovirus from GP+E86/LNCX cells, were employed to demonstrate the feasibility of the engineering analysis. Our results indicated that the time-variant specific retroviral production rate of 293GPG/EGFP cells reached its maximum value of 5.7 x 10(-)(3) CFU/cm(2).h.cell, and the constant specific retroviral production rate of GP+E86/LNCX cells was 1.49 x 10(-)(2) CFU/cm(2).h.cell for the whole period of production. Furthermore, the effects of serum concentration and temperature on the ecotropic retroviral production system were examined separately. Our results suggest that producing ecotropic retroviruses with 10% fetal bovine serum at 37 degrees C is the optimal operating conditions for the long-term production system used here.  相似文献   

9.
Spodoptera frugiperda insect cells were grown in Sf-900 serum-free medium and two kinds of serum-supplemented media (IPL -41 and Grace's). The specific growth rates of uninfected cells were found to be 0.024, 0.35, and 0.034 h(-1) respectively, at 33 degrees C. The IPL -41 medium supported to highest maximum cell density (10.6 x 10(6) cells/mL) compared to 3.5 x 10(6) and 8.7 x 10(6) cells/mL with the Grace's and serum-free media, respectively. In temperature shifdown experiments with a temperature-sensitive baculo-virus (acts10YM1CAT), virus titer and chloramphenicol acetyl transferase (CAT) expression were highest in the IPL -41 (5.1 x 10(7) PFU/mL and 20000 U/mL). Use of Grace's medium gave higher virus titers than the serum-free medium (4.4 x 10(6) vs 4.1 x 10(5) PFU/mL) as well as higher CAT titers (7050 vs 1980 U/mL). Interestingly, in the three media used, the highest virus and CAT titers were obtained at MOI (multiplicity of infection) of 0.02 At MOI of 2.0 virtually no increase in virus of CAT titer was observed. This result is contrary to those obtained at constant-temperature (27 degrees C) infection and cell culture, in which higher virus titers and recombinant protein expression and obtained at higher MOI.  相似文献   

10.
Shen BQ  Clarke MF  Palsson BO 《Cytotechnology》1996,22(1-3):185-195
Rapidly expanding development and practice of gene therapy requires the availability of large quantities of high titer retroviral supernatants. One way to achieve high retroviral titers is through improved understanding of the kinetics of retroviral production and decay, and the subsequent development of improved cell culture methods. In the present study we investigated the effects of different operational modes on the retroviral production of the NIH 3T3 fibroblast derived amphotropic murine retroviral producing cell line pMFG/CRIP. Semi-continuous culture (exchange of 50% of medium volume daily) was found to promote cell growth and enhance retroviral production. The rapid medium exchange resulted in significantly larger amounts of high titer supernatants and an extended production phase as compared to the batch control cultures. The specific viral productivity of the pMFG/CRIP cells was in the range of 10 to 40 infectious viruses produced per thousand producer cells per day. The CV-1 African Green Monkey kidney cell line was used as the infection target. Lowering the serum level form 20% to 10% improved retroviral production slightly. However, at lower serum levels (1%, 5% and 10% (v/v)) growth of the producer cell line, and thus retroviral production, was directly proportional to the serum level. The half-life of the virus at 37°C was found to be 5.5 hours. Promoting the growth of producer cell lines can improve retroviral vectors titers and viral production. High cell density systems that allow for rapid cell growth and waste product removal are likely to be used to generate high-titer retroviral supernatants.  相似文献   

11.
12.
13.
14.
Young WB  Link CJ 《Journal of virology》2000,74(11):5242-5249
Most retroviral packaging cell lines were established by a helper virus plasmid cotransfected with a separate plasmid encoding a selection marker. Since this selection marker coexisted in trans with the helper virus sequence, helper virus gene expression could be inactivated by host DNA methylation despite selection for the cotransfected selection marker. We have reported that DNA methylation could occur in the long terminal repeat (LTR) region of helper virus in vector producer cells (VPC) in up to 2% of the population per day (W. B. Young, G. L. Lindberg, and C. J. Link, Jr., J. Virol. 74:3177-3187, 2000). To overcome host cell DNA methylation that suppresses viral gene expression, we constructed a chimeric retroviral helper virus, pAM3-IRES-Zeo, that contains Moloney murine leukemia virus as a helper virus and a picornavirus internal ribosome entry site (IRES) sequence followed by a Zeocin selection marker at the 3' end of the env sequence. This pAM3-IRES-Zeo permitted selection for intact and functional helper virus in transfected cells without subcloning. By selection with Zeocin, a mixed population of pAM3-IRES-Zeo-transfected NIH3T3 cells (AMIZ cells) was maintained with little or no DNA methylation of the helper virus 5' LTR. The high level of pAM3-IRES-Zeo gene expression resulted in no detectable vector superinfection and in high vector titers (2 x 10(6) to 1.5 x 10(7) CFU/ml) after introduction of a retroviral vector. When Zeocin selection was withdrawn from AMIZ cells, methylation of the 5' LTR increased from 17 to 36% of the population during 67 days of continuous culture and the cells became susceptible to superinfection. During this period, gene expression of pAM3-IRES-Zeo decreased and vector titer production was reduced to 2 x 10(4) CFU/ml. These data demonstrate an important role of DNA methylation in the genetic instability of VPC. The chimeric helper virus allows the establishment of a mixed population of packaging cells capable of high-level and sustained vector production without cloning procedures.  相似文献   

15.
Hemorrhage is a common clinical manifestation in dengue patients. However, the pathogenic mechanism of dengue virus (DV)-induced hemorrhage awaits clarification. We established a mouse model of DV hemorrhage using immunocompetent C57BL/6 mice by injecting DV serotype 2 strain 16681 intradermally. While inoculation of 3 x 10(9) PFU of DV induced systemic hemorrhage in all of the mice by day 3 of infection, one out of three of those injected with 4 x 10(7) to 8 x 10(7) PFU developed hemorrhage in the subcutaneous tissues. The mice that were inoculated with 4 x 10(7) to 8 x 10(7) PFU but that did not develop hemorrhage were used as a basis for comparison to explore the pathogenic mechanism of dengue hemorrhage. The results showed that mice with severe thrombocytopenia manifested signs of vascular leakage and hemorrhage. We observed that high viral titer, macrophage infiltration, and tumor necrosis factor alpha (TNF-alpha) production in the local tissues are three important events that lead to hemorrhage. Immunofluorescence staining revealed that DV targeted both endothelial cells and macrophages. In addition, the production of high levels of TNF-alpha in tissues correlated with endothelial cell apoptosis and hemorrhage. By comparing TNF-alpha(-/-) to IgH(-/-), C5(-/-), and wild-type mice, we found that TNF-alpha was important for the development of hemorrhage. In vitro studies showed that mouse primary microvascular endothelial cells were susceptible to DV but that TNF-alpha enhanced DV-induced apoptosis. Our mouse model illustrated that intradermal inoculation of high titers of DV predisposes endothelial cells to be susceptible to TNF-alpha-induced cell death, which leads to endothelium damage and hemorrhage development. This finding highlights the contribution of the innate immune response to dengue hemorrhage.  相似文献   

16.
The retroviral gene transfer system is a powerful tool for somatic gene therapy. A retroviral stock with a high viral titer and lacking replication-competent virus (RCV) is desirable for this type of gene transfer. To fulfill these requirements, we made a new packaging cell line, designated ampli-GPE. To reduce the homology between proviral DNA in the packaging cell and retroviral vector, the gag-pol and env genes of Moloney murine leukemia virus were separated onto two different plasmids, pGP-KV and pENV-KV, respectively, in which the 5' long terminal repeat and the 3' long terminal repeat had been replaced by the mouse metallothionein I promoter or the human beta-globin gene containing the polyadenylation site as control units for the gag-pol and env genes. In addition, these plasmids contained 69% of the bovine papillomavirus gene for gene amplification to obtain production of virus at a high titer. NIH 3T3 clones containing approximately 20 to 50 copies of the gag-pol and env genes were selected and designated ampli-GPE. When ampli-GPE was transfected with the N2 vector or pZipNeoSV(DHFR) derived from pZipNeoSV(X)1, we established clones producing titers of 5 x 10(6) and 1 x 10(6) CFU/ml, respectively. There was no sign of RCV generation in any virus-producing cells from ampli-GPE. However, virus-producing cells derived from psi 2 cells transfected with N2 did generate RCV. Thus, we showed that ampli-GPE, possessing the minimum complement of proviral genes, has potential for the development of a gene transfer system.  相似文献   

17.
High-titer adenovirus vector production in 293S cell perfusion culture   总被引:1,自引:0,他引:1  
Human 293S cells culture for recombinant adenovirus production is traditionally carried out in batch at a maximum of 6 x 10(5) cells/mL. A previous report demonstrated that fed-batch, applied to the adenovirus/293S cells system, improves the volumetric production of viral proteins by increasing the cell density at which cells can be infected, up to 2 x 10(6) cells/mL, without reducing the per-cell yield of product. To increase this cell density limit, the adenovirus production was performed in a perfusion system where the cells were separated by means of a tangential flow filtration device. 293S cell growth to 14 x 10(6) cells/mL was achieved in 10 days, at a medium renewal rate of 1 volume of medium per reactor volume and day (VVD). For adenovirus production, three 293S cell cultures were perfused at 1 VVD in parallel and infected at an average density of 8 x 10(6) cells/mL. One of the cultures was set at 37 degrees C and the two others at 35 degrees C. After a rapid initial cell loss, the average cell density stabilized at 5.75 x 10(6) cells/mL, 12 h postinfection, which was 8 times higher than the cell density in the batch control. This allowed the production of 3.2 x 10(9) infectious viral particles/mL (IVP/mL) at 37 degrees C and 7.8 x 10(9) IVP/mL at 35 degrees C, this last result being 5.5 times higher than the control. To our knowledge, this nonconcentrated titer is the highest value that has ever been published for adenovirus vector production. These observations lead to the conclusion that perfusion is an efficient tool to maintain, at high cell density, a specific production rate level sufficient to increase significantly the adenovirus volumetric production. Furthermore, it shows that perfusion at 35 degrees C can improve viral titer by 2.4-fold compared to 37 degrees C, in accordance with a previous study on adenovirus batch production.  相似文献   

18.
Laboratory strains of enteroviruses, as well as viruses isolated from raw wastewater, were found to exhibit enhanced infectivity in vitro when BGM cell monolayers were pretreated with the cationic polymer polyethyleneimine (PEI). Viruses were assayed by the cytopathic effect technique and as PFU under methylcellulose and agar overlays with monolayers treated with 0 to 5.0 x 10(-3)% (wt/vol) PEI in phosphate-buffered saline supplemented with 2% fetal bovine serum. Poliovirus type 1 cytopathic effect occurred at an enhanced rate in cells treated with 5.0 x 10(-3)% PEI compared with untreated cells. PEI-treated cells were found to adsorb viruses much more effectively than untreated cells did. When the methylcellulose overlay procedure was used, rates of infectivity were enhanced as follows: poliovirus type 1, 5.5-fold; echovirus type 1, 1.2-fold; echovirus type 5, 5.2-fold; and coxsackievirus type B5, 4.9-fold. Viruses concentrated from raw wastewater showed a 3.8-fold increase in titer when quantitated by the most-probable-number method and a 3.3-fold increase when quantitated as PFU under an agar overlay.  相似文献   

19.
Laboratory strains of enteroviruses, as well as viruses isolated from raw wastewater, were found to exhibit enhanced infectivity in vitro when BGM cell monolayers were pretreated with the cationic polymer polyethyleneimine (PEI). Viruses were assayed by the cytopathic effect technique and as PFU under methylcellulose and agar overlays with monolayers treated with 0 to 5.0 x 10(-3)% (wt/vol) PEI in phosphate-buffered saline supplemented with 2% fetal bovine serum. Poliovirus type 1 cytopathic effect occurred at an enhanced rate in cells treated with 5.0 x 10(-3)% PEI compared with untreated cells. PEI-treated cells were found to adsorb viruses much more effectively than untreated cells did. When the methylcellulose overlay procedure was used, rates of infectivity were enhanced as follows: poliovirus type 1, 5.5-fold; echovirus type 1, 1.2-fold; echovirus type 5, 5.2-fold; and coxsackievirus type B5, 4.9-fold. Viruses concentrated from raw wastewater showed a 3.8-fold increase in titer when quantitated by the most-probable-number method and a 3.3-fold increase when quantitated as PFU under an agar overlay.  相似文献   

20.
The production of retroviral vectors by human cell lines is still hampered by low titers making it relatively difficult to produce very large quantities of this vector of high interest for clinical gene therapy applications. Thus, to improve vector production, we studied the influence of different sugars alone or combinations of sugars on cell growth, vector titers, and metabolism of the producer cell. The use of fructose at 140 mM or a mixed medium (with glucose at 25 mM and fructose at 140 mM) improved the virus titer three- to fourfold, respectively, and the producer cell productivity by fivefold. The increase in the cell productivity was due to a 1.5-fold increase in the vector stability, the remaining increase being due to higher cell specific productivity. The increase in the productivity was associated with lower glucose oxidation and an increase in the lactate and alanine yield. In the mixed medium, an increase in fatty acids derived from the glucose was observed in parallel with a reduction of glutamate and glutamine synthesis via the tricarboxylic acid (TCA) cycle acetyl-CoA and α-ketoglutarate, respectively. Although the higher productivities were associated with severe changes in the glycolysis, TCA cycle, and glutaminolysis, the cell energetic status monitored by phosphocreatine and adenosine triphosphate levels was not significantly affected. The synthesis of fatty acids and phospholipids were enhanced in the fructose or mixed media and are possibly key parameters in retroviral vector production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号