首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Mitogen-activated protein (MAP) kinase cascades play important roles in plant immunity. Upon pathogen associated molecular pattern (PAMP) treatment, MPK3, MPK6 and MPK4 are quickly activated by upstream MKKs through phosphorylation. Western blot analysis using α-phospho-p44/42-ERK antibody suggests that additional MPKs with similar size as MPK4 are also activated upon PAMP perception. To identify these MAP kinases, 7 candidate MPKs with similar sizes as MPK4 were selected for further analysis. Transgenic plants expressing these MPKs with a ZZ-3xFLAG double tag of 17 kD were generated and analyzed by western blot. MPK1, MPK11 and MPK13 were found to be phosphorylated upon treatment with flg22. Our study revealed additional MAPKs being activated during PAMP-triggered immunity.  相似文献   

4.
C2H2-type zinc finger proteins (ZFPs) play diverse roles in plant response to abiotic stresses. ZAT6, an Arabidopsis C2H2-type ZFP, has been reported to regulate root development and nutrient stress responses. However, its roles in regulation of abiotic stress response are incompletely known. Here, we demonstrate that salt or osmotic stress triggers a strong increase in ZAT6 expression in leaves. Transgenic plants overexpressing ZAT6 showed improved seed germination under salt and osmotic stress. Intriguingly, ZAT6 interacts with a stress-responsive mitogen-activated protein kinase MPK6 in vitro and in planta. ZAT6 is phosphorylated by both recombinant and plant endogenous MPK6. Serine 8 and serine 223 in ZAT6 were identified as the sites phosphorylated by MPK6. In contrast to wild-type form of ZAT6, overexpression of phosphorylation mutant form did not display significantly enhanced salt and osmotic stress tolerance. Altogether, our results suggest that phosphorylation by MPK6 is required for the functional role of ZAT6 in seed germination under salt and osmotic stress.  相似文献   

5.
Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.  相似文献   

6.
MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-directed phosphorylation (pS-P) contribute to kinase specificity towards substrates. In the present study, we used a random positional peptide library to search for consensus phosphorylation sequences for Arabidopsis MAPKs MPK3 and MPK6. These experiments indicated a preference towards the sequence L/P-P/X-S-P-R/K for both kinases. After bioinformatic processing, a number of novel candidate MAPK substrates were predicted and subsequently confirmed by in vitro kinase assays using bacterially expressed native Arabidopsis proteins as substrates. MPK3 and MPK6 phosphorylated all proteins tested more efficiently than did another MAPK, MPK4. These results indicate that the amino acid residues in the primary sequence surrounding the phosphorylation site of Arabidopsis MAPK substrates can contribute to MAPK specificity. Further characterization of one of these new substrates confirmed that At1g80180.1 was phosphorylated in planta in a MAPK-dependent manner. Phenotypic analyses of Arabidopsis expressing phosphorylation site mutant forms of At1g80180.1 showed clustered stomata and higher stomatal index in cotyledons expressing the phosphomimetic form of At1g80180.1, providing a link between this new MAPK substrate and the defined role for MPK3 and MPK6?in stomatal patterning.  相似文献   

7.
Mitogen-activated protein kinases (MPKs) have roles in regulating developmental processes and responses to various stimuli in plants. Activations of some MPKs are necessary for proper responses to hyperosmolarity and to a stress-related phytohormone, abscisic acid (ABA). However, there is no direct evidence that MPK activations are regulated by drought and rehydration. Here we show that the activation state of one of the Arabidopsis MPKs, MPK6, is directly regulated by drought and rehydration. An immunoblot analysis using an anti-active MPK antibody detected drought-induced activation and rehydration-induced inactivation of MPK6. MPK6 was activated by drought even in an ABA-deficient mutant, aba2-4. In addition, exogenously added ABA failed to suppress the rehydration-dependent inactivation of MPK6. Under drought conditions, elevated levels of reactive oxygen species (ROS), which are known elicitors of MPK6 activation, were detected in both wild type and an MPK6-deficient mutant, mpk6-4. These results suggest that ROS, but not ABA, induces MPK6 activation as an upstream signal under drought conditions.  相似文献   

8.
9.
10.
11.
12.
Multivesicular bodies (MVBs) play essential roles in many cellular processes. The MVB pathway requires reversible membrane association of the endosomal sorting complexes required for transports (ESCRTs) for sustained protein trafficking. Membrane dissociation of ESCRTs is catalyzed by the AAA ATPase SKD1, which is stimulated by LYST-INTERACTING PROTEIN 5 (LIP5). We report here that LIP5 is a target of pathogen-responsive mitogen-activated protein kinases (MPKs) and plays a critical role in plant basal resistance. Arabidopsis LIP5 interacts with MPK6 and MPK3 and is phosphorylated in vitro by activated MPK3 and MPK6 and in vivo upon expression of MPK3/6-activating NtMEK2DD and pathogen infection. Disruption of LIP5 has little effects on flg22-, salicylic acid-induced defense responses but compromises basal resistance to Pseudomonas syringae. The critical role of LIP5 in plant basal resistance is dependent on its ability to interact with SKD1. Mutation of MPK phosphorylation sites in LIP5 does not affect interaction with SKD1 but reduces the stability and compromises the ability to complement the lip5 mutant phenotypes. Using the membrane-selective FM1–43 dye and transmission electron microscopy, we demonstrated that pathogen infection increases formation of both intracellular MVBs and exosome-like paramural vesicles situated between the plasma membrane and the cell wall in a largely LIP5-dependent manner. These results indicate that the MVB pathway is positively regulated by pathogen-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in plant immune system likely through relocalization of defense-related molecules.  相似文献   

13.
The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophoresis and gel-staining with ProQ Diamond and the protein was digested by either trypsin or chymotrypsin for maximum sequence coverage to facilitate identification of phosphorylated positions. Prior to analysis by mass spectrometry, samples were either desalted, passed over TiO(2) or both for improved phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine residues (Ser72, Ser108, Ser120) in the phosphorylated form.  相似文献   

14.
Phosphorylation of substrate proteins by mitogen-activated protein kinases (MPKs) determines the specific cellular responses elicited by a particular extracellular stimulus. However, downstream targets of plant MPKs remain poorly characterized. In this study, 29 putative substrates of AtMPK3, AtMPK4 and AtMPK6 were identified by solid-phase phosphorylation screening of a λ phage expression library constructed from combined mRNAs from salt-treated, pathogen-treated and mechanically wounded Arabidopsis seedlings. To test the efficiency of this screening, we performed in vitro kinase assay with 10 recombinant fusion proteins. All proteins were phosphorylated by AtMPK3, AtMPK4 and AtMPK6, indicating the efficiency of this screening procedure. To confirm phosphorylation of isolated substrates by plant MPKs, we performed in-gel kinase assays. All test substrates were strongly phosphorylated by wounding or H2O2-activated AtMPK3 and AtMPK6. Three substrates, encoded by genes At2g41430, At2g41900, and At3g16770, were strongly phosphorylated, suggesting a function as AtMPK substrates. The type of screening provides a powerful way for identifying potential substrates of MAP kinases responsive to biotic and abiotic stresses.  相似文献   

15.
Arabidopsis MAP kinase phosphatase 1 (AtMKP1) is a member of the mitogen-activated protein kinase (MPK) phosphatase family, which negatively regulates AtMPKs. We have previously shown that AtMKP1 is regulated by calmodulin (CaM). Here, we examined the phosphorylation of AtMKP1 by its substrate AtMPK6. Intriguingly, AtMKP1 was phosphorylated by AtMPK6, one of AtMKP1 substrates. Four phosphorylation sites were identified by phosphoamino acid analysis, TiO(2) chromatography and mass spectrometric analysis. Site-directed mutation of these residues in AtMKP1 abolished the phosphorylation by AtMPK6. In addition, AtMKP1 interacted with AtMPK6 as demonstrated by the yeast two-hybrid system. Finally, the phosphatase activity of AtMKP1 increased approximately twofold following phosphorylation by AtMPK6. By in-gel kinase assays, we showed that AtMKP1 could be rapidly phosphorylated by AtMPK6 in plants. Our results suggest that the catalytic activity of AtMKP1 in plants can be regulated not only by Ca(2+)/CaM, but also by its physiological substrate, AtMPK6.  相似文献   

16.
17.
Rapid recognition and signal transduction of mechanical wounding through various signaling molecules, including calcium (Ca2+), protein phosphorylation, and reactive oxygen species (ROS), are necessary early events leading to stress resistance in plants. Here we report that an Arabidopsis mitogen-activated protein kinase 8 (MPK8) connects protein phosphorylation, Ca2+, and ROS in the wound-signaling pathway. MPK8 is activated through mechanical wounding, and this activation requires direct binding of calmodulins (CaMs) in a Ca2+-dependent manner. MPK8 is also phosphorylated and activated by a MAPKK MKK3 in the prototypic kinase cascade, and full activation of MPK8 needs both CaMs and MKK3 in planta. The MPK8 pathway negatively regulates ROS accumulation through controlling expression of the Rboh D gene. These findings suggest that two major activation modes in eukaryotes, Ca2+/CaMs and the MAP kinase phosphorylation cascade, converge at MPK8 to monitor or maintain an essential part of ROS homeostasis.  相似文献   

18.
The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (MKK5) and likely other MKKs to inhibit MPKs and PAMP-triggered immunity. Inhibition of PAMP-induced MPK phosphorylation was observed when HopF2 was delivered naturally by the bacterial type III secretion system. In addition, HopF2 Arg-71 and Asp-175 residues that are required for the interaction with MKK5 are also necessary for blocking MAP kinase activation, PAMP-triggered defenses, and virulence function in plants. HopF2 can inactivate MKK5 and ADP-ribosylate the C terminus of MKK5 in vitro. Arg-313 of MKK5 is required for ADP-ribosylation by HopF2 and MKK5 function in the plant cell. Together, these results indicate that MKKs are important targets of HopF2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号