首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Previous work has demonstrated that phorbol ester (TPA)-induced adherence of human U937 myeloid leukemia cells can be blocked upon down-modulation of the β2-integrin CD11b after stable transfection of U937 cells with a pMTH1 vector-containing the CD11b gene in antisense orientation (asCD11b-U937) [Otte et al., (2011)]. In the present study, alterations in metabolism-associated factors, particularly intra- and extracellular proteases were investigated. A measurement of telomerase activity in the leukemic cells revealed continuously decreasing telomere adducts within 72?h of TPA treatment in pMTH1-U937 cells. In contrast, telomerase activity sustained in asCD11b-U937 upon TPA-induced differentiation. Flow cytometric analysis confirmed unchanged CD11b levels in TPA-induced asCD11b-U937 in contrast to elevated levels in pMTH1-U937 whereby the expression of other β2-integrins including CD11a, CD11c and CD18 was increased in both populations after TPA treatment. Moreover, adherent pMTH1-U937 demonstrated the expression of monocytic differentiation markers including F4-80 and CD14 and an increased MIP-1α production which remained at low or undetectable in TPA-induced asCD11b-U937. These effects indicated an altered response of the different cell populations to the TPA-induced differentiation process. Indeed, Western blot analysis revealed differences in the expression levels of intracellular metabolic factors including MnSOD and p97/VCP and after measurement of 20?S proteasomal proteolytic activity. In addition, increased levels of extracellular metabolic factors including the matrix metalloproteinases MMP-1, MMP-7 and MMP-9 were observed in pMTH1-U937 cells in contrast to unaltered levels in asCD11b-U937 cells.  相似文献   

2.
The product of the blr1 gene is a CXC chemokine receptor (CXCR5) that regulates B lymphocyte migration and has been implicated in myelomonocytic differentiation. The U937 human leukemia cell line was used to study the role of blr1 in retinoic acid-regulated monocytic leukemia cell growth and differentiation. blr1 mRNA expression was induced within 12 hr by retinoic acid in U937 cells. To determine whether the early induction of blr1 might regulate inducible monocytic cell differentiation, U937 cells were stably transfected with blr1 (U937/blr1 cells). Ectopic expression of blr1 caused no significant cell cycle or differentiation changes, but caused the U937/blr1 cells to differentiate faster when treated with either retinoic acid or 1alpha,25-dihydroxyvitamin D(3). Treated with retinoic acid, U937/blr1 cells showed a greater increase in the percentage of CD11b expressing cells than vector control cells. Retinoic acid also induced a higher percentage of functionally differentiated blr1 transfectants as assessed by nitroblue tetrazolium reduction. U937/blr1 cells underwent moderate growth inhibition on treatment with retinoic acid. Similar results occurred with 1alpha,25-dihydroxyvitamin D(3). Because blr1 was induced early during cell differentiation and because its overexpression accelerated monocytic differentiation, it may be important for signals controlling cell differentiation.  相似文献   

3.
为了观察正常人骨髓成纤维样细胞系HFCL对急性单核细胞白血病U937细胞促分化作用,及其对经典诱导分化剂TPA诱导分化作用的影响,先建立U937细胞和HFCL细胞共培养体系,以细胞形态学改变、硝基四氦唑蓝(NBT)、流式细胞仪检测细胞周期和CD11b、CD13、CD14、CD33细胞表面抗原作为诱导分化指标;Western印迹检测P38蛋白的表达变化。结果发现,与HFCL细胞共培养后,U937细胞出现分化成熟的形态学改变,且与HFCL细胞直接接触组的诱导分化作用大于用transwell组。同时发现U937细胞与HFCL细胞共培养后,G1期细胞增高,S期细胞减少;CD11b、CD13、CD14和CD33表达增高;且NBT阳性细胞增高至46、3%。Western印迹检测结果显示,直接接触组总P38蛋白表达增加。而且HFCL细胞还能增强TPA对U937的诱导分化作用。  相似文献   

4.
Activation of PKC with 5 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h in human U937 myeloid leukemia cells is associated with induction of adherence, followed by monocytic differentiation and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these effects about 25% of U937 cells accumulated in an apoptotic subG1 phase after TPA treatment. The appearance of these apoptotic suspension cells was detectable throughout the time course of the culture and was independent of TPA concentrations between 0.5 and 500 nM. Experiments with cells synchronized by centrifugal elutriation revealed dominant susceptibility of G1-phase cells to TPA-mediated apoptosis. While adherent cells expressed differentiation markers including the integrin CD11c, this effect was less pronounced in the TPA-treated suspension fraction. Moreover, previous work has demonstrated cell cycle arrest in differentiating U937 cells. Accordingly, PKC activation by TPA treatment was associated with a significant expression of the cdk/cyclin inhibitor p21WAF/CIP/sdi-1 in the adherent population and subsequent G0/G1 cell cycle arrest. In contrast, suspension cells failed to induce significant levels of p21WAF/CIP/sdi-1 after TPA stimulation. Immunoblotting experiments demonstrated no difference in the expression of the pro-apoptotic factors Bax, Bad, and Bak in either control U937 and TPA-treated adherent or suspension cells, respectively. However, anti-apoptotic factors including Bcl-2, Bcl-xL, and Mcl-1 were significantly induced in the adherent population whereas no induction was detectable in the suspension cells. In this context, incubation with the caspase-3/caspase-7 specific tetrapeptide inhibitor DEVD prior to TPA treatment prevented an accumulation of cells in subG1, respectively, demonstrating an involvement of these caspases. Taken together, these data suggest that PKC activation can relay distinct signaling pathways such as induction of adherence coupled with monocytic differentiation and growth arrest, or induction of caspase-mediated apoptosis coupled with the failure to adhere and to differentiate.  相似文献   

5.
6.
H Saito  T Kuroki  K Nose 《FEBS letters》1989,249(2):253-256
Change in the level of CuZn-superoxide dismutase (SOD) mRNA was examined using a molecular probe during differentiation of human monocytic leukemia U937 cells or promyelotic leukemia HL-60 cells induced by either 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or dimethylsulfoxide (DMSO). CuZn-SOD mRNA levels were found to decrease during the course of differentiation, and this response is specific for differentiation, since the treatment of human B cell leukemia cells or normal diploid fibroblasts with TPA failed to have any effect on the level of CuZn-SOD mRNA. The activity of CuZn-SOD in U937 cells also decreased during differentiation, but following that of the CuZn-SOD mRNA level. The expression of the CuZn-SOD gene is thus concluded to diminish during the differentiation of HL-60 and U937 cells.  相似文献   

7.
Transforming growth factor beta (TGF-beta) enhanced the growth-inhibitory activities of dexamethasone (Dex) and 1alpha,25-dihydroxyvitamin D3 (VD3) on human monocytoid leukemia U937 cells. TGF-beta and VD3 synergistically increased the expression of differentiation-associated markers such as the CD11b and CD14 antigens, whereas TGF-beta and Dex did not. On the other hand, TGF-beta and Dex synergistically increased the number of Apo2.7-positive cells, which represents the early stage of apoptosis, whereas TGF-beta and VD3 did not, suggesting that TGF-beta enhanced apoptosis with Dex and enhanced monocytic differentiation with VD3. In the presence of TGF-beta, the retinoblastoma susceptibility gene product, pRb, was synergistically dephosphorylated by Dex as well as VD3. TGF similarly enhanced the expression of the p21Waf1 gene in U937 cells treated with Dex and VD3. TGF-beta dose-dependently increased the expression of Bcl-2 and Bad and decreased the expression of Bcl-X(L) in U937 cells. Dex enhanced the down-regulation of Bcl-X(L) expression in TGF-beta-treated cells, whereas VD3 blocked this down-regulation of Bcl-X(L). However, the down-regulation of Bcl-X(L) by treatment with the antisense oligomer did not affect the apoptosis or differentiation of U937 cells. The apoptosis of CD14-positive cells was suppressed in the VD3 plus TGF-beta-treated cultures. These results suggest that the expression of CD14 is involved in the survival of differentiated cells.  相似文献   

8.
CD43 is a leukocyte-specific surface molecule which plays an important role both in adhesion and signal transduction. We have identified a site spanning nucleotides +18 to +39 within the human CD43 gene promoter which in vitro is hypersensitive to cleavage by nuclease S1. Repeats of this region are sufficient to activate expression of a heterologous promoter in CD43-positive cell lines. Two nuclear factors, PyRo1 and PyRo2, interact with the hypersensitive site. PyRo1 is a single-stranded DNA-binding protein which binds the pyrimidine-rich sense strand. Mutation analysis demonstrates that the motif TCCCCT is critical for PyRo1 interaction. Replacement of this motif with the sequence CATATA abolishes PyRo1 binding and reduces expression of the CD43 promoter by 35% in Jurkat T lymphocytic cells and by 52% in the pre-erythroid/pre-megakaryocytic cell line K562. However, this same replacement failed to affect expression in U937 monocytic cells or in CEM T lymphocytic cells. PyRo1, therefore, exhibits cell-specific differences in its functional activity. Further analysis demonstrated that PyRo1 not only interacts with the CD43 gene promoter but also motifs present within the promoters of the CD11a, CD11b, CD11c and CD11d genes. These genes encode the α subunits of the β2 integrin family of leukocyte adhesion receptors. Deletion of the PyRo1 binding site within the CD11c gene reduced promoter activity in T lymphocytic cells by 47%. However, consistent with our analysis of the CD43 gene, the effect of this same deletion within U937 monocytic cells was less severe. That PyRo1 binds preferentially to single-stranded DNA and sequences within the CD43 and CD11 gene promoters suggests that expression of these genes is influenced by DNA secondary structure.  相似文献   

9.
10.
11.
12.
Some characteristics of U-937 and HL-60 leukemia cell lines treated with a fraction of non-dialyzable extract of spinach are reported. The absorbed fraction separated by a DEAE-Tyopearl 650 column chromatography of the non-dialyzable extract induced NBT reducing activity of U-937 and HL-60 cells. This fraction also induced substrate adhesion of U-937 cells, and the non-specific esterase activity of HL-60 cells. The expression of CD11b, CD11c and CD36 antigens on the U-937 cell surface was enhanced by the treatment with the fraction, whereas CD24 antigen was not. The treatment of HL-60 cells with the fraction also induced the expression of CD11b and CD11c antigens, but CD24 and CD36 were not expressed. These results indicated that the non-dialyzable extract of spinach induced immature differentiation of U-937 and HL-60 cells into monocyte/macrophages.Abbreviations NBT nitroblue tetrazolium - TPA 12-O-tetradecanoyl-phorbol-13-acerate - PBS phosphate buffered saline - FITC fluorescein isothiocyanate  相似文献   

13.
The fusion oncogene, promyelocytic leukemia (PML)-retinoic acid receptor-α (RARα), is crucial for acute promyelocytic leukemia (APL) pathogenesis. Previous studies have reported that PML-RARα is cleaved by neutrophil elastase (NE), an early myeloid-specific serine protease, leading to translocation of the nuclear localization signal (NLS) of the PML protein to the N-terminal of RARα. This study was designed to evaluate the value of NLS-RARα in the early diagnosis of APL. To investigate the potential functional role of NLS-RARα in leukemogenesis, HL-60 and U937 cell lines were transfected with NLS-RARα lentivirus and negative control (LVNC). The results showed that the induced expression of NLS-RARα down-regulated expressions of CD11b, CD11c, and CD14 compared to the LVNC group induced by 1α, 25-dihydroxyvitamin D3(1,25(OH)2D3). This suggested that NLS-RARα overexpression inhibited granulocytic and monocytic differentiation of myeloid leukemia cells. In addition, Wright-Giemsa staining, flow cytometry, respiratory burst assay, and NBT reduction assay all confirmed the importance of NLS-RARα in differentiation. The mechanistic investigations revealed that induced NLS-RARα expression inhibited 1,25(OH)2D3-induced granulocytic differentiation by regulating the cell cycle regulators p19INK4D, p21WAF1/CIP1, cyclinD1, cyclin E1, and pRB. Furthermore, the cleaved protein NLS-RARα enhanced the oncogenicity of U937 cells in NOD/SCID mice. These findings collectively demonstrated that NLS-RARα blocked granulocytic and monocytic differentiation of myeloid leukemia cells by inhibiting the downstream targets of the RARα signal pathway and the cell cycle. This may provide a promising new target and method for diagnosing and treating APL.  相似文献   

14.
Interleukin-34 (IL-34) is a cytokine consisting of a 39kD homodimer, shown to be a ligand for both the Macrophage Colony Stimulating Factor (M-CSF/CSF-1) receptor and the Receptor-like protein tyrosine phosphatase-zeta (RPTP-ƺ). IL-34 has been shown to promote monocyte viability and proliferation as well as the differentiation of bone marrow cells into macrophage progenitors. Published work on IL-34 involves its effects on normal hematopoietic and osteoclast progenitors. However, it is not known whether IL-34 has biologic effects in cancer, including leukemia. Here we report that the biological effects of IL-34 include induction of differential expression of Interleukins-1α and -1β as well as induction of differentiation of U937, HL-60 and THP-1 leukemia cell lines demonstrating monocyte-like characteristics. The ability of IL-34 to induce monocytic-like differentiation is supported by strong morphological and functional evidence. Cell surface markers of myeloid lineage, CD64 and CD86, remain constant while the levels of CD11b and CD71 decline with IL-34 treatment. IL-34 also induced increases in CD14 and CD68 expression, further supporting maturation toward monocytic character. IL-34-induced differentiated U937 and THP-1 cell lines exhibited biological functions such as endocytosis and respiratory burst activities. Collectively, we conclude that while IL-34 does not induce cell growth or proliferation, it is able to induce differentiation of leukemia cell lines from monoblastic precursor cells towards monocyte- and macrophage-like cells, mediated through the JAK/STAT and PI3K/Akt pathways. To our knowledge, this is the first report that IL-34 induces differentiation in human leukemic cells, let alone any cancer model.  相似文献   

15.
16.
Proteinase 3 (PR3), also called myeloblastin, is involved in the control of myeloid cell growth, but the underlying molecular mechanisms have not been elucidated. In U937/PR3, stably transfected with PRCRSV/PR3 to overexpress PR3, PMA-induced p21 expression was significantly decreased as compared with control U937, and this phenomenon was reversed in the presence of the serine proteinase inhibitor, pefabloc. Conversely, when PR3 was inactivated by small interfering RNA, p21 protein was increased, and PMA-induced monocytic differentiation was potentiated. Mass spectrometry analysis identified Ala45 as the primary cleavage site on p21, and the recombinant mutated p21A45R, generated by site-directed mutagenesis and expressed in Escherichia coli, was resistant to in vitro PR3 cleavage. The U937 cells were then stably transfected with either PRCRSV/p21 or PRCRSV/p21A45R, to ectopically express wild type p21 or PR3-resistant p21, respectively. In U937/p21A45R treated with PS-341, a selective proteasome inhibitor, a significant decrease in the S phase and a blockade in the G0-G1 phase of cell cycle were observed when compared with U937/p21 or control U937. This suggested that both PR3 and the proteasome are efficiently involved in the proteolytic regulation of p21 expression in myeloid cells. Moreover, PMA-induced p21 expression was more pronounced in U937/p21A45R compared with U937/p21 and was concomitant with the morphological features of early differentiation. Our data demonstrated that p21 is one specific target of PR3 and that PR3-mediated p21 cleavage prevents monocytic differentiation.  相似文献   

17.
Treatment of human U-937 myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with activation of the stress-activated protein kinase (SAPK) and induction of terminal monocytic differentiation. The present studies demonstrate that TPA targets SAPK to mitochondria by a mechanism dependent on activation of protein kinase C (PKC) beta. Translocation of SAPK to mitochondria in response to TPA is associated with release of cytochrome c, caspase-3 activation and induction of apoptosis. The results show that TPA induces the association of SAPK with the mitochondrial anti-apoptotic Bcl-x(L) protein. Overexpression of Bcl-x(L) attenuated the apoptotic response to TPA treatment. Moreover, expression of Bcl-x(L) mutated at sites of SAPK phosphorylation (Thr-47, -115) was more effective than wild-type Bcl-x(L) in abrogating TPA-induced cytochrome c release and apoptosis. By contrast, expression of Bcl-x(L) had little effect on induction of the monocytic phenotype. These findings indicate that myeloid leukemia cells respond to TPA with targeting of SAPK to mitochondria and that this response contributes to terminal differentiation through the release of cytochrome c and induction of apoptosis.  相似文献   

18.
The promyelocytic leukemia-retinoic acid receptor α (PML/RARα) is hypothesized to play a vital role in the pathogenesis of acute promyelocytic leukemia (APL). A previous study has demonstrated that PML/RARα is cleaved by neutrophil elastase (NE) in early myeloid cells, which leads to an increase in the nuclear localization signal (NLS) in RARα and in the incidence of APL. In this study, we explored the effects of NLS-RARα on acute myeloid leukemia (AML) cells and studied the mechanism of its localization. LV-NLS-RARα recombinant lentivirus and negative control LV-NC lentivirus were transfected into HL-60 cells and U937 cells while mutant NLS-RARα were transfected into U937 cells, and all groups were treated with 1α, 25-dihydroxyvitamin D3(1,25D3). The results showed that NLS-RARα was located mainly in the nucleus while mutant NLS-RARα was located in the cytoplasm. Overexpression of NLS-RARα downregulated the expression of CD11b, CD11c, CD14, and three forms of CEBPβ compared to the overexpression of NC and mutant NLS-RARα. It was speculated that the abnormal localization of NLS-RARα was mediated via importin-α/β in the pathogenesis of APL. By producing point mutations in the two NLSs in NLS-RARα, we showed that the nuclear import of NLS-RARα was mainly dependent on the NLS of the RARα portion. Subsequently, we found that importin-α1 (KPNA2)/importin-β1 (KPNB1) participates in the nuclear transport of NLS-RARα. Taken together, abnormal localization of NLS-RARα blocks the differentiation of APL cells, and nuclear localization of NLS-RARα depends on NLS of the RARα portion and is mediated via binding with importin-α/β.  相似文献   

19.
Human myeloid leukemia cells respond to 12-O-tetradecanoylphorbol-13-acetate (TPA) and other activators of protein kinase C (PKC) with induction of monocytic differentiation. The present studies demonstrated that treatment of U-937 and HL-60 myeloid leukemia cells with TPA, phorbol-12,13-dibutyrate, or bryostatin 1 was associated with the induction of stress-activated protein kinase (SAPK). In contrast, TPA-resistant TUR and HL-525 cell variants deficient in PKCβ failed to respond to activators of PKC with the induction of SAPK. A direct role for PKCβ in TPA-induced SAPK activity in TUR and HL-525 cells that stably express PKCβ was confirmed. We showed that TPA induced the association of PKCβ with MEK kinase 1 (MEKK-1), an upstream effector of the SAPK/ERK kinase 1 (SEK1)→SAPK cascade. The results also demonstrated that PKCβ phosphorylated and activated MEKK-1 in vitro. The functional role of MEKK-1 in TPA-induced SAPK activity was further supported by the demonstration that the expression of a dominant negative MEKK-1 mutant abrogated this response. These findings indicate that PKCβ activation is necessary for activation of the MEKK-1→SEK1→SAPK cascade in the TPA response of myeloid leukemia cells.  相似文献   

20.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号