首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract For hermaphroditic plant species whose fruit production is limited by maternal resources, the "pollen donation hypothesis" views large floral displays as an adaptation to enhance the probability of fathering seeds on other plants. This hypothesis has frequently been used to describe the evolution of large floral displays in milkweeds ( Asclepias ). Most tests of the pollen donation hypothesis, however, have used indirect measures, such as flower production or pollen removal, to estimate male reproductive success. To test the pollen donation hypothesis directly, we performed a paternity analysis and determined the number of seeds sired by individual genotypes in a natural population of poke milkweed, A. exaltata , in southwestern Virginia. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success: r = 0.32, P < 0.05; for female success: r = 0.66, P < 0.0001). Functional gender of plants that reproduced both as males and females (N = 17) was not correlated with flower number per plant ( r = 0.35, P>0.05), indicating that plants with large floral displays did not reproduce primarily as males. Percent fruit-set and seed number per fruit were higher in 1986, when levels of pollinarium removal also were higher. Furthermore, several umbels that experienced high pollinator activity selectively matured fruits that contained many seeds. We argue that the evolution of large floral displays in milkweeds is the result of selection to increase overall reproductive success rather than male reproductive success alone.  相似文献   

2.
簇花芹(Soranthus meyeri)是古尔班通古特沙漠中常见的、具雄全同株性系统的伞形科多年生早春短命植物。该文对簇花芹花期性比(两性花数/总花数)与植株大小的关系及其开花式样进行了研究, 重点对花期大小依赖的性别资源分配进行了讨论。结果表明: 2006-2008年簇花芹群体水平的性比分别为0.69 ± 0.03、0.62 ± 0.03和0.69 ± 0.02, 彼此间无显著差异( p > 0.05), 表明其性比是相对稳定的, 可能受遗传因素的控制。雄花生物量与花粉量均比两性花的小, 说明产生雄花比产生两性花所需资源少。一级复伞形花序比二级复伞形花序具有较多的两性花, 说明前者易从植株上获得资源用于增加雌性适合度; 而后者产生较多的雄花以避免在雌性功能上资源投入的浪费, 增大花展示以吸引更多传粉者来增加花粉输出总量, 提高其整体适合度。植株水平的性比与地上营养器官的生物量间呈正相关关系, 说明较大个体对雌性功能的投资较大, 雌性繁殖成功受资源限制。复伞形花序内各伞形花序几乎同时向心开放, 且所有两性花及花序均为雄性先熟, 雌雄阶段完全分离, 但一级复伞形花序比二级复伞形花序早开放约5天, 彼此开花重叠期约为1天。这些特征对于一级复伞形花序进行异株异花授粉以及植株内不同级别花序间的同株异花传粉、避免雌雄功能间的干扰具有重要意义。  相似文献   

3.
One explanation for low fruit sets in plants with hermaphroditic flowers is that total flower production by a plant is controlled primarily by selection through male function. This male function hypothesis presupposes that success in pollen donation increases more strongly with flower number than does seed set. I tested this prediction by measuring male and female components of reproductive success as functions of flower number in natural populations of the self-incompatible, perfect flowered plant, Ipomopsis aggregata. Fruit set in this hummingbird-pollinated plant averaged 4.9 to 40.3% across the 4 years of study. Both the total amount of pollen donated and the total amount received, as estimated by movement of fluorescent powdered dyes, increased linearly with number of flowers on a plant. Total seed production, however, increased disproportionately quickly because plants with larger floral displays were more likely to set at least one fruit. An estimate of the functional femaleness of a plant, based on pollen donation and seed production, increased with flower number. These results do not support the male function hypothesis.  相似文献   

4.
Summary In field experiments withAralia hispida inflorescences, the following variables were manipulated: number of umbels per inflorescence, number of flowers per umbel, and amounts of pollen and nectar per flower. Visitation rates by bumble bees, the principal pollinators, were then observed. In the reward-variation experiments, bees appeared to learn the positions of nectar-rich shoots, and visited them significantly more often than nectar-poor shoots. They did not respond to similar variation in pollen production. The nectar preferences developed slowly after the treatments were imposed, and bees continued to favor sites that had been occupied by nectar-rich shoots even after the treatments were discontinued. Visitation rate was approximately proportional to flower number, making it unlikely that increases in inflorescence size produced a disproportionate gain in male reproductive success (a necessary condition in certain models for the evolution of dioecy). For a fixed number of flowers per inflorescence, bees preferred inflorescences with more umbels. In pairwise choice tests of male-phase and female-phase umbels of various sizes, bees preferred male-phase umbels and larger umbels; the preference for male-phase umbels is stronger in bees that had previously fed on male-phase umbels.  相似文献   

5.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

6.

Background and Aims

The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.

Methods

To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.

Key Results

Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.

Conclusions

Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period.  相似文献   

7.
Large floral displays should theoretically provide advantages to plants through increased pollinator visitation and resulting fruit and seed set. However empirical tests of the response of pollinators to floral display size have been limited by a lack of direct experimentation, and the results of such studies have been equivocal. In addition, other selective agents such as pre-dispersal seed predators might modulate effects of floral display on pollination. By artificially altering flower number, we examined the direct effects of floral display in the monocarpic herb, Ipomopsis aggregata (Polemoniaceae), on visitation rates by broad-tailed and rufous hummingbird pollinators, as well destruction of fruits by a pre-dispersal seed predator (Hylemya: Anthomyiidae). In addition, we quantified the ultimate effects of flower number on female reproductive success. Plants with larger floral displays were most likely to be visited first in any given foraging bout (P < 0.01). As expected, plants with more flowers received more total flower visits. However, we found no gain in the proportion of flowers visited for many- versus few-flowered plants, or the total number of approaches/hour. In fact, a significantly greater percentage of flowers were visited on few-flowered plants. Plants did not compensate for our reduction in flowers by increasing investment in the number or proportion of flowers that set fruit, the number of seeds/fruit, or seed weight. Pre-dispersal seed predation was greater for many- than for few-flowered plants (P < 0.001), but this did not offset the potential fitness gains of producing large displays. Our data support the hypothesis that large floral displays function primarily in long-distance attraction of pollinators, and enhance maternal success. Received: 21 March 1996 / Accepted: 24 October 1996  相似文献   

8.
Very low fruit set in milkweeds and other flowering plants often has been attributed to greater sexual selection on inflorescence size via male, rather than female, reproductive success. Although this explanation has been generally accepted, alternate explanations have been presented, and recently the “male function” or “pollen donation” hypothesis has been sharply criticized. In this paper, we make the distinction between selection on total flower number and on the size of inflorescence units, both of which have been termed “inflorescence size.” We present an ESS model for the evolution of inflorescence design that considers reproductive success through male and female function. The model predicts that selection will balance the proportional changes in female and male reproductive success resulting from changes in inflorescence-unit size. We conducted a field study of selection on the size of inflorescence units (umbels) by manipulating umbel size and number in a natural population of Asclepias tuberosa, in southeastern Arizona, during two reproductive seasons. We found that the male fitness function reached a maximum at an intermediate umbel size in both years (although not significantly different from the smallest umbel size in either year), whereas the female fitness function was highest for the smallest umbel size in one year, but was constant across umbel sizes in the other year. We also found that pollinator visitation rate corresponded well with male, but not female, function, and that between-year variation in the male reproductive success of different umbel sizes corresponded with variation in the composition of the pollinator pool. Our empirical results, when inserted in the model, predict ESS umbel sizes similar to those observed in the study population and the species throughout its range.  相似文献   

9.
Understanding the fitness of plants with inflorescences requires examining variation in sex allocation among flowers within inflorescences. We examined whether differences in the duration of the male and female phases of flowering lead to variation in sex allocation and reproductive success among flowers within inflorescences. In 2002 and 2003, we quantified floral longevity, floral sex allocation, and reproductive success between the first and the second flowers within inflorescences in a protandrous species, Aquilegia buergeriana var. oxysepala. Floral longevity was greater in the first flowers than in the second ones in both years. The male phase lasted longer, and the initial number of pollen grains and the number of pollen grains removed were greater in the first flowers than in the second ones in both years. Within first flowers, the number of pollen grains removed was greater in flowers that had longer male phases, thus duration of the male phase may positively affect male reproductive success in the first flowers. The female phase lasted longer and the number of ovules was greater in the first flowers than in the second only in 2002. However, seed production per flower and female phase duration in both years were not significantly related. The variation in the number of pollen grains among flowers in this species may be caused by the variation in male phase duration.  相似文献   

10.
Huang SQ  Tang LL  Sun JF  Lu Y 《The New phytologist》2006,171(2):417-424
Pollinator-mediated selection has been hypothesized as one cause of size dimorphism between female and male flowers. Flower number, ignored in studies of floral dimorphism, may interact with flower size to affect pollinator selectivity. In the present study, we explored pollinator response, and estimated pollen receipt and removal, in experimental populations of monoecious Sagittaria trifolia, in which plants were manipulated to display three, six, nine or 12 female or male flowers per plant. In this species, female flowers are smaller but have a more compressed flowering period than males, creating larger female floral displays. Overall, pollinators preferred to visit male rather than female displays of the same size. Both first visit per foraging bout and visitation rates to female displays increased with display size. However, large male displays did not show increased attractiveness to pollinators. A predicted relationship that pollen removal, rather than pollen receipt, is limited by pollinator visitation was confirmed in the experimental populations. The results suggest that the lack of selection on large male displays may affect the evolution of floral dimorphism in this species.  相似文献   

11.
Recently, some evolutionary biologists have argued that selection on the male component of fitness shapes the evolution of reproductive characters in angiosperms. Floral features, such as inflorescence size, that lead to increased insect visitation without a concomitant increase in seed production are viewed as adaptations to enhance the probability of fathering seeds on other plants. In tests of this “pollen donation hypothesis,” male reproductive success has usually been measured indirectly by flower production, pollinator visitation, or pollen removal. We tested the pollen donation hypothesis directly by quantifying the number of seeds sired by individual genotypes in a natural population of poke milkweed, Asclepias exaltata, in southwestern Virginia. Multiple paternity was low within fruits, a fact which allowed us to use genotypes of progeny arrays to identify a unique pollen parent for 85% of the fruits produced in the population. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success, r = 0.32, P > 0.05; for female success, r = 0.66, P > 0.001). While the number of pollinaria removed, the usual estimator of male success in milkweeds, was highly correlated with numbers of seeds sired (r = 0.47; P > 0.001), it was even more highly correlated with numbers of seeds produced (r = 0.71, P > 0.001). Analysis of functional gender indicated that plants with many flowers did not behave primarily as males. In fact, individuals with the highest total reproductive success contributed equally as males and females. Furthermore, estimates of gender based on numbers of flowers produced or pollinaria removed overestimated the number of functional males in the population. In pollen-limited species, such as many milkweeds, proportional increases in both male and female reproductive success indicate the potential for selection to shape the evolution of large floral displays through both male and female functions.  相似文献   

12.
The fecundity of insect-pollinated plants may not be linearly related to the number of flowers produced, since floral display will influence pollinator foraging patterns. We may expect more visits to plants with more flowers, but do these large plants receive more or fewer visits per flower than small plants? Do all pollinator species respond in the same way? We would also expect foragers to move less between plants when the number of flowers per plant are large, which may reduce cross-pollination compared to plants with few flowers. We examine the relationships between numbers of inflorescence per plant, bumblebee foraging behaviour and seed set in comfrey, Symphytum officinale, a self-incompatible perennial herb. Bumblebee species differed in their response to the size of floral display. More individuals of Bombus pratorum and the nectar-robbing B.?terrestris were attracted to plants with larger floral displays, but B. pascuorum exhibited no increase in recruitment according to display size. Once attracted, all bee species visited more inflorescences per plant on plants with more inflorescences. Overall the visitation rate per inflorescence and seed set per flower was independent of the number of inflorescences per plant. Variation in seed set was not explained by the numbers of bumblebees attracted or by the number of inflorescences they visited for any bee species. However, the mean seed set per flower (1.18) was far below the maximum possible (4 per flower). We suggest that in this system seed set is not limited by pollination but by other factors, possibly nutritional resources.  相似文献   

13.
Abstract: We studied the reproductive success and pollinators of Cucurbita maxima ssp. andreana in different disturbed habitats where it grows naturally. Data were obtained from three populations. One grew within a soybean crop, the other within a corn crop, and the third in an abandoned crop field. Cucurbita maxima ssp. andreana is an annual vine with a flowering period from December to April. Male flowers appear first, thereafter female and male flowers appear together. Flower lifetime (9 h) was similar in male and female flowers. The pollinator guild was comparable for the three populations but some differences in the frequency of the insect species were observed. Native bees were the main pollinators in the population in the abandoned field, while beetles pollinated the populations in crop fields. These differences were not linked with the pre-emergent reproductive success, fruit and seed set, or fruit quality. This is a self-compatible plant. Fruit and seed set and fruit traits (total mass, width and length of fruits, number of seeds per fruit, and seed mass) did not show significant differences between hand-cross and hand-self pollinated flowers. This wild cucurbit is a generalist with respect to pollinator guild, and flower visitors seem to be highly efficient in pollen transference. Cucurbita maxima ssp. andreana is well adapted to disturbed habitats because plants ripened fruits successfully, regardless of the group of insects visiting flowers.  相似文献   

14.
何爽  谭敦炎 《广西植物》2022,42(10):1652-1660
新疆阿魏是特产于我国新疆的伞形科阿魏属多年生一次结实草本植物,属于国家二级保护的濒危植物。其种群中除了该科植物典型的雄全同株个体以外,还具有一定数量雄性不育的雌株。为了探究新疆阿魏的雄性不育现象及其影响因素,该文从细胞形态学角度对种群中的雌株以及雌花的形态特征进行了观测,采用石蜡切片技术对功能性雌花雄蕊的花药败育过程进行了观察。结果表明:(1)雌株3月底萌动,4月中旬进入花期,5月底果实成熟; 物候期与雄全同株个体相同。(2)植株高度(71.00±10.92)cm和直径(71.67±17.64)cm、一级分支(23.83±2.04); 基生叶长(33.41±11.63)cm、宽(24.47±8.60)cm; 在植株大小、基生叶大小等方面雌株与雄全同株个体无差异。(3)在雌株上,一级分支和二级分支均为雌花序,均可结实; 雌花序的伞幅数/每复伞花序(13.22±4.70)、花数/每花序(12.03±2.30)、总花数/每复伞花序(159.08)均高于两性花序; 雌株比雄全同株个体产生更多可结实的花,形成更多具有杂种优势的异交后代。(4)雌花序中,花排列紧密,花间距小于两性花序和雄花序; 开花时,雌花花瓣微微张开,与两性花、雄花花瓣向下反折的形态明显不同。(5)功能性雌花的花瓣形态、雌蕊形态及大小与两性花/雄花无差异,但是花瓣大小[长(1.79±0.39)mm、宽(1.10±0.21)mm]、雄蕊长度(0.6~1.3)mm最小,花药退化,无花粉。(6)在雌花退化雄蕊的花药发育过程中,出现了花药壁和雄配子体的异常发育; 花药败育发生在造孢细胞时期至小孢子四分体时期。综上所述,新疆阿魏雄性不育植株的营养供给与雄全同株个体相同,但是资源分配模式不同; 功能性雌花在形态和功能上明显区别于两性花和雄花; 其雄蕊败育的主要影响因素是药壁结构的异常发育,尤其是绒毡层的缺失导致了小孢子败育。  相似文献   

15.
Abstract Complete dichogamy occurs when temporal separation prevents any overlap in male and female function within and among flowers of one or more inflorescences. Although dichogamy may increase outcrossing and prevent inbreeding, it also results in the presentation of inflorescences with different floral resources. Pollinators may prefer one gender over the other based on these differences, which can reduce the transfer of pollen to conspecific stigmas and reduce floral resources for effective pollinators. We investigated whether the insect visitors of Trachymene incisa (Apiaceae), an Australian herb demonstrating complete protandry at the umbel level, show a preference for male or female umbels. The male phase umbels present pollen and nectar, whereas the female phase umbels offer nectar only. Therefore, we expect pollen‐collecting insects to favour male umbels, whereas insects that forage only for nectar will favour female umbels. In natural patches that exhibited a male umbel bias, insects showed a preference for male phase umbels at Agnes Banks in 2003 and at Myall Lakes in both 2003 and 2004. By contrast, insects showed no preference for umbel phases, visiting umbels at a similar frequency to which they occurred, at Agnes Banks in 2004 and at Tomago in both 2003 and 2004. This suggests spatial and temporal variation in insect preferences for umbel phases that differ in floral rewards. In experimental arrays where the umbel gender ratio was equal, there were no significant differences between male and female umbels in terms of insect visitation during a foraging trip and mean foraging time per visit. The differing patterns of preference may be due to a differential response by insects when the umbel ratios vary, where a male bias in umbel genders leads to a preference for male umbels, whereas an equal umbel gender ratio leads to equal visitation to male and female phase umbels.  相似文献   

16.
By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.  相似文献   

17.
Summary Individual plants in gynodioecious populations ofPhacelia linearis (Hydrophyllaceae) vary in flower gender, flower size, and flower number. This paper reports the effects of variation in floral display on the visitation behaviour of this species' pollinators (mainly pollen-collecting solitary bees) in several natural and three experimental plant populations, and discusses the results in terms of the consequences for plant fitness. The working hypotheses were: (1) that because female plants do not produce pollen, pollen-collecting insects would visit hermaphrodite plants at a higher rate than female plants and would visit more flowers per hermaphrodite than per female; and (2) that pollinator arrival rate would increase with flower size and flower number, the two main components of visual display. These hypotheses were generally supported, but the effects of floral display on pollinator visitation varied substantially among plant populations. Hermaphrodites received significantly higher rates of pollinator arrivals and significantly higher rates of visits to flowers than did females in all experimental populations. Flower size affected arrival rate and flower visit rate positively in natural populations and in two of the three experimental populations. The flower size effect was significant only among female plants in one experimental population, and only among hermaphrodites in another. The effect of flower number on arrival rate was positive and highly significant in natural populations and in all experimental populations. In two out of three experimental populations, insects visited significantly more flowers per hermaphrodite than per female and visited more flowers on many-flowered plants than on few-flowered plants, but neither effect was detected in the third experimental population. Because seed production is not pollen-limited in this species, variation in pollinator visitation behaviour should mainly affect the male reproductive success of hermaphrodite plants. These findings suggest that pollinator-mediated natural selection for floral display inP. linearis varies in space and time.  相似文献   

18.
G. J. Lowenberg 《Oecologia》1997,109(2):279-285
Sexual expression in hermaphroditic plants is often a function of environmental factors affecting individuals before or during flowering. I tested for the effects of floral herbivory and lack of pollination in early umbels on the relative proportions of hermaphroditic and staminate (male) flowers produced on later umbels by Sanicula arctopoides, a monocarpic, andromonoecious perennial. Neither floral herbivory or lack of early pollination had a significant effect on the ratio of the two floral morphs, but the probability of producing staminate flowers on late umbels was strongly and positively related to plant size measured just prior to floral initiation and prior to herbivory. Plant size was also negatively correlated with flowering date. I suggest that producing staminate flowers on late umbels should benefit large early-blooming plants more than small late-blooming plants because more mating opportunities occur during the period when these flowers release pollen. Although herbivory did not cause labile changes of sex, whole plant phenotypic gender was still strongly affected by various forms of treatment. Sex-biased herbivory or lack of pollination rendered plants more or less phenotypically male, depending on which tissues were affected. Deer and pollen-feeding mites preferentially remove male tissues while hymenopteran seed predators preferentially remove female tissues. I conclude that combinations of herbivores could have counteracting or compounding effects on plant gender, and these effects may change the rankings of male and female reproductive success within populations. Received: 20 February 1996/Accepted: 30 July 1996  相似文献   

19.
Dichogamy is one of the most widespread floral mechanisms in flowering plants and is thought to have evolved to reduce interference between pollen import and export within flowers, especially self-pollination. Self-pollination between flowers may also be reduced if dichogamy is synchronous among flowers on an inflorescence. The analysis of dichogamy at both levels requires that the sexual phases of individual flowers be defined functionally in terms of pollen deposition and removal. We conducted morphological and functional analyses to investigate the degree of dichogamy within flowers and the synchronicity of dichogamy between flowers within inflorescences in an emergent, aquatic monocot, flowering rush (Butomus umbellatus). Based on daily observations of the development of marked flowers, data on the schedule of anther dehiscence within flowers, and repeat surveys of floral sex ratios in three populations, individual flowers appear to be strictly protandrous. On average, each flower spends ~1 d in each of male and female phases with an intervening 1-d neuter phase during which there is no available pollen in anthers and stigmas are not yet exposed to receive pollen. Morphological criteria used to delimit the beginning and end of each of these three sex phases were validated by quantifying the temporal schedule of pollen removal from anthers and pollen deposition on stigmas. Experimental pollinations showed that the morphological changes marking the end of female phase are hastened by pollen deposition. At the umbel level, synchronous development within sequential cohorts of flowers reduced overlap of male and female sexual phases between flowers. On average (±1 SE), 72 ± 3% of flowers completed their female phase while no other flowers on the same umbel were in male phase. Computer simulations of umbel development showed that this value is significantly higher than expected if the timing of flower development within umbels was random (30 ± 1%). Surveys of floral sex ratios in three populations revealed that 87% of umbels were either unisexual male or female at any given time. Pollinators usually visited more than one flower in sequence when foraging on umbels, suggesting that synchronous dichogamy may be an adaptation to avoid geitonogamy. The adaptiveness of both flower- and umbel-level dichogamy is also suggested because both traits are expressed to a lesser extent in obligately clonal, triploid populations, where flowers do not make seeds and hence floral adaptations are not maintained by natural selection.  相似文献   

20.
The relative allocation of resources to male and female functions may vary among flowers within and among individual plants for many reasons. Several theoretical models of sex allocation in plants predict a positive correlation between the resource status of a flower or individual and the proportion of reproductive resources allocated to female function. These models assume that, independent of resource status, a negative correlation exists between male and female investment. Focusing on the allocation of resources within flowers, we tested these theoretical predictions and this assumption using the annual Clarkia unguiculata (Onagraceae). We also sought preliminary evidence for a genetic component to these relationships. From 116 greenhouse-cultivated plants representing 30 field-collected maternal families, multiple flowers and fruits per plant were sampled for gamete production, pollen?:?ovule ratio, seed number, ovule abortion, seed biomass/fruit, mean individual seed mass, and petal area. If sex allocation changes as predicted, then (1) assuming that flowers produced early have access to more resources than those produced later, basal flowers should exhibit a higher absolute and proportional investment in female function than distal flowers and (2) plants of high resource status (large plants) should produce flowers with a higher proportional investment in female function than those of low resource status. Within plants, variation in floral traits conformed to the first prediction. Among plants and families, no significant effects of plant size (dry stem biomass) on intrafloral proportional sex allocation were observed. We detected no evidence for a negative genetic correlation between male and female investment per flower, even when controlling for plant size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号