首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Niche partitioning within species assemblages is thought to influence species packing and/or total niche space occupied. The evolution of dung beetles (Scarabaeinae) is likely to have been strongly influenced by inter‐specific competition, leading to niche partitioning. We consider whether local‐scale processes leave a signature in regional patterns of functional diversity in dung beetle assemblages, and investigate the correlation between total exploited ecomorphological space and density of species packing with increased species richness. We test whether ecomorphological space occupied by local assemblages reflects that of their regional species pool, and the extent to which ecomorphological space is convergent or divergent within functional groups across regional pools. Location Neotropics, Africa, Australia and Madagascar. Methods Dung beetle assemblages were collected in a standardized manner from four biogeographic regions. Ecomorphological similarity among the assemblages was assessed by multivariate analysis of 19 linear measurements for 300 species and three functional nesting types (roller, tunneller or dweller), firstly on a local level within the Neotropics and Afrotropics, and then between the regional species pools. Results Key body measurements, in particular the hind tibia, separated rollers and tunnellers into largely non‐overlapping entities along the first three axes of the shape analysis. Three Neotropical assemblages, which vary widely in species numbers, each harboured a similar amount of morphometric variation, resulting in increasingly dense species packing with greater species richness. Similar findings were obtained in two South African assemblages. Assemblages in the four biogeographic regions showed largely similar distributions of ecomorphological variation, including the separation of rollers and tunnellers, despite their distant phylogenetic relationships. Ecomorphological similarity among regions was particularly high in tunnellers, whilst the rollers exhibited greater regional differentiation. Main conclusions Local assemblages evidently represent the full diversity of functional groups available in the regional pool, even in species‐poor assemblages. There is a strong trend towards convergence in morphology separating tunnellers and rollers in phylogenetically independent lineages. The ecomorphological similarity of regional assemblages suggests that morphological convergence is the result of common selective forces active within the assemblages themselves. This lends support to the widely hypothesized effect of inter‐specific interactions and niche partitioning in determining assemblage composition and lineage evolution in the Scarabaeinae.  相似文献   

2.
1. Interspecific niche differences have long been identified as a major explanation for the occurrence of species-rich communities. However, much fieldwork studying variation in local species richness has focused upon physical habitat attributes or regional factors, such as the size of the regional species pool. 2. We applied indices of functional diversity and niche overlap to data on the species niche to examine the importance of interspecific niche differentiation for species richness in French lake fish communities. We combined this information with environmental data to test generalizations of the physiological tolerance and niche specialization hypotheses for species-energy relationships. 3. We found evidence for a largely non-saturating relationship (relative to random expectation) between species richness and functional evenness (evenness of spacing between species in niche space), while functional richness (volume of niche space occupied) peaked at moderate levels of species richness and niche overlap showed an initial decrease followed by saturation. This suggests that increased niche specialization may have allowed species to coexist in the most species-rich communities. 4. We tested for evidence that increased temperature, local habitat area, local habitat diversity and immigration affected species richness via increased niche specialization. Temperature explained by far the largest amount of variation in species richness, functional diversity and niche overlap. These results, combined with the largely non-saturating species richness-functional evenness relationship, suggest that increased temperature may have permitted increased species richness by allowing increased niche specialization. 5. These results emphasize the importance of niche differences for species coexistence in species-rich communities, and indicate that the conservation of functional diversity may be vital for the maintenance of species diversity in biological communities. Our approach may be applied readily to many types of community, and at any scale, thus providing a flexible means of testing niche-based hypotheses for species richness gradients.  相似文献   

3.
Aim Increased specialization has been hypothesized to facilitate local coexistence and thus high species richness, but empirical evaluations of the richness–specialization relationships have been relatively scant. Here, we provide a first assessment of this relationship for terrestrial bird assemblages at global extent and from fine to coarse grains. Location World‐wide. Methods We use two indices of specialization that describe species‐level resource use: diet and habitat specialization. The relationship between richness and mean assemblage‐level specialization was independently assessed at realm, biome‐realm, 12,100 km2 equal‐area grid cells and fine‐grained scales. To identify assemblages that are diverse relative to environmental conditions we: (1) applied quantile regressions, (2) statistically accounted for other environmental variables which may constrain richness, and (3) parsed the data according to the residuals of a model relating species richness to the environmental variables. Results Assemblage species richness increases with both measures of specialization at all scales. Statistically, richness appears constrained by levels of specialization, with the highest richness values only found in specialized assemblages. Richness is positively associated with specialization even after accounting for gradients in resource availability. Net primary productivity and assemblage specialization have complementary statistical effects on assemblage species richness. Contrary to expectations based on niche partitioning of local resources, the relationship between specialization and richness is steep even at coarse scales. Main conclusions The results demonstrate that for an entire clade, totalling > 9000 species, specialization and species richness are related, at least for diverse assemblages. The strong patterns observed across scales suggest that this relationship does not solely originate from (1) limits on coexistence in present‐day assemblages, or (2) increased specialization in richer assemblages imposed by species’ abilities to partition ecological space. Instead, regional‐scale influences on the species pool may determine much of the observed relationship between richness and specialization. Although causal attribution is not straightforward, these findings support the idea that, for the scale of our analysis, specialization may be related to the past origination of high‐diversity assemblages, rather than their contemporary assembly.  相似文献   

4.
Aim Species specialization, which plays a fundamental role in niche differentiation and species coexistence, is a key biological trait in relation to the responses of populations to changing environments. Species with a limited niche breadth are considered to experience a higher risk of extinction than generalist species. This work aims to measure the degree of specialization in the regional flora of the French Alps and test whether species specialization is related to species rarity and ecological characteristics. Location This study was conducted in the French Alps region, which encompasses a large elevational gradient over a relatively limited area (26,000 km2). Methods Specialization was estimated for approximately 1200 plant species found in the region. Given the inherent difficulty of pinpointing the critical environmental niche axes for each individual species, we used a co‐occurrence‐based index to estimate species niche breadths (specialization index). This comprehensive measurement included crucial undetermined limiting niche factors, acting on both local and regional scales, and related to both biotic and abiotic interactions. The specialization index for each species was then related to a selection of plant typologies such as Grime strategies and Raunkiaer life‐forms, and to two measurements of plant rarity, namely regional area of occupancy and local abundance. Results Specialist species were mainly found in specific and harsh environments such as wetlands, cold alpine habitats and dry heathlands. These species were usually geographically restricted but relatively dominant in their local communities. Although none of the selected traits were sufficient predictors of specialization, pure competitors were over‐represented amongst generalist species, whereas stress‐tolerant species tended to be more specialized. Main conclusions Our results suggest that co‐occurrence‐based indices of niche breadth are a satisfactory method for inferring plant specialization using large species samples across very heterogeneous environments. Our results are an empirical validation of the tolerance–dominance trade‐off and also provide interesting insights into the long‐standing question of which biological properties characterize species with narrow niche breadth that are potentially threatened by global changes in the environment.  相似文献   

5.
The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter‐ and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland‐forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species‐trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co‐occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community assembly at broader scales.  相似文献   

6.
Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad‐scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration‐selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene‐by‐environment interactions across populations to better understand the dynamics and scale of balancing selection.  相似文献   

7.
Soininen J  Heino J 《Protist》2007,158(2):181-191
We examined the relationship between average niche parameters and species richness of benthic diatom assemblages of boreal streams. We hypothesized that diverse assemblages should be typified by small average niche breadth of species, whereas low-diversity assemblages should be typified by broad average niche breadth. We also hypothesized that low-diversity sites should be dominated by either non-marginal species only or marginal species only, depending on the degree to which these sites could be categorized to range from environmentally typical sites to atypical sites. Niche breadth and niche position for each species were determined via Outlying Mean Index analysis. As hypothesized, we found that median niche parameters were significantly related to species richness. Median niche breadth showed both significant linear (R(2)=0.328, p<0.001) and unimodal (R(2)=0.354, p<0.001) relationship to species richness. The relationship between median niche position and species richness was best approximated by a unimodal model (R(2)=0.214, p=0.005). The underlying gradient in species richness was best accounted for by a regression model including moss cover, iron, and nitrogen, and explained 32% of variability in species richness. Our results showed that sites with high-diversity assemblages are likely to be occupied by specialists with a narrow niche breadth, whereas low diversity assemblages are dominated by generalists. Furthermore, the unimodal relationship between niche position and species richness suggested that species-poor sites may be typified by either non-marginal or marginal species.  相似文献   

8.
Aim The New Zealand terrestrial mollusc fauna is among the most speciose in the world, with often remarkably high richness at lowland forest sites. We sought to elucidate general explanations for patterns of richness in terrestrial mollusc communities by analysis of species coexistence and habitat relationships within a New Zealand district fauna. Location Pukeamaru Ecological District, eastern North Island, New Zealand. Methods We sampled molluscs using qualitative methods at twenty-three sites and quantitatively by frame sampling of scrubland-forest floor litter at sixteen of these sites and analysed patterns of species richness and turnover in relation to regional species pools and local habitat attributes. We then tested for nonrandom assemblage of taxa along diversity and habitat gradients. Results Ninety-four indigenous mollusc species were recorded from a district fauna estimated at 102 indigenous species: only two species were endemic. From the presumptive geological history of the district, the low endemism, and Brooks parsimony and indicator species analyses of faunal relationships, the communities were indicated to have resulted by accumulation of colonists from other New Zealand districts since the Miocene. Richness ranged from two or three indigenous species in dune habitats to fifty-nine species in a floristically rich forest. Beta diversity was high and site occupancy per species was low, indicating communities structured by successive replacement of ecological equivalents. Sites differing in vegetation had characteristic species assemblages, indicating a degree of habitat specialization. Canonical correspondence analysis indicated that canopy tree species, canopy height, floristic diversity, altitude, litter mass, and litter pH were important determinants of species assemblage in scrubland and forest. Richness was strongly associated with site floristic diversity and, for litter-dwelling species, the pH of litter substrate. High richness occurred at those sites supporting molluscs in high abundance. Shell-shape distributions were essentially Cainian unimodal, with communities dominated by snail species with subglobose to discoidal shells. Mean and variance of shell size increased with mollusc species richness and floristic diversity at sites, indicating dominance of communities by small-shelled species at early successional or floristically poor sites, and increased richness resulting from addition of larger snails into vacant niches. Shifts in shell form were associated with sympatry in several congeneric taxa. Main conclusions The underdispersion of shell shape, relative to faunas elsewhere in the world, indicates that community structure in New Zealand land snail faunas has been constrained by limited phylogenetic diversity and/or by convergence upon successful adaptations. The remarkably high richness that characterizes these communities indicates special conditions allow coexistence of numerous species. The relationship between floristic diversity at sites and the richness, diversity, and shell-size distributions of the molluscs suggests assemblages structured around niche partitioning among competing species. While there is an element of congruence between vegetation and mollusc pattern, this study indicates that assembly rules will be defined, and spatial pattern predicted, only through a better understanding of the linkage between regional species pool, organism traits, environment, and local community assemblage.  相似文献   

9.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   

10.
Understanding how species respond to human activities is paramount to ecology and conservation science, one outstanding question being how large-scale patterns in land use affect biodiversity. To facilitate answering this question, we propose a novel analytical framework that combines environmental niche models, multi-grain analyses, and species traits. We illustrate the framework capitalizing on the most extensive dataset compiled to date for the butterflies of Italy (106,514 observations for 288 species), assessing how agriculture and urbanization have affected biodiversity of these taxa from landscape to regional scales (3–48 km grains) across the country while accounting for its steep climatic gradients. Multiple lines of evidence suggest pervasive and scale-dependent effects of land use on butterflies in Italy. While land use explained patterns in species richness primarily at grains ≤12 km, idiosyncratic responses in species highlighted “winners” and “losers” across human-dominated regions. Detrimental effects of agriculture and urbanization emerged from landscape (3-km grain) to regional (48-km grain) scales, disproportionally affecting small butterflies and butterflies with a short flight curve. Human activities have therefore reorganized the biogeography of Italian butterflies, filtering out species with poor dispersal capacity and narrow niche breadth not only from local assemblages, but also from regional species pools. These results suggest that global conservation efforts neglecting large-scale patterns in land use risk falling short of their goals, even for taxa typically assumed to persist in small natural areas (e.g., invertebrates). Our study also confirms that consideration of spatial scales will be crucial to implementing effective conservation actions in the Post-2020 Global Biodiversity Framework. In this context, applications of the proposed analytical framework have broad potential to identify which mechanisms underlie biodiversity change at different spatial scales.  相似文献   

11.
Aim Our aims were (1) to compare observed, estimated and predicted patterns of species richness using the Australian native Asteraceae as an example, (2) to identify candidates for hotspots of diversity for the study group, and (3) to examine the distortion of our perception of the spatial distribution of species richness through uneven or misdirected sampling efforts. Location Australia. Methods Based on data from Australia’s Virtual Herbarium, we calculated and visualized observed species richness, the Chao1 estimate of richness, the C index of collecting completeness, and an estimate of richness derived from environmental niche modelling for grid cells at a resolution of 1°. The 20 cells with the highest diversity values were used to define hotspots of diversity. Results Uneven collecting activity results in misleading diversity patterns for the family Asteraceae. While observed species richness is much higher in central Australia than in other parts of the arid interior, this is an artefact resulting from the area being a hotspot of collecting activity. The mountain ranges of south‐eastern Australia and Tasmania are candidates for unbiased hotspots of species richness. Main conclusions Vast areas of the Australian interior are insufficiently sampled on a local scale, although most of them can be expected to be relatively species poor. Some areas in the south‐east and south‐west of the continent remain undersampled relative to their high species richness. Observed species numbers, estimators and environmental niche‐modelling all have their unique advantages and disadvantages for the inference of patterns of diversity.  相似文献   

12.
13.
To compare community assemblage patterns in tropical northeastern and subtropical central eastern Australia across selected gradients and scales, we tested the relationship of species traits with phylogenetic structure, and niche breadth. We considered phylogenetic relationships across current‐day species in assemblages in relation to rain forest species pool sizes, and trait values along gradients including elevation and latitude. Trait values were quantified across scales for seed size, leaf area, wood density and maximum height at maturity for 1137 species and 596 assemblages using trait gradient analysis (TGA). Local assemblages of subtropical species had narrower trait ranges, and higher niche breadth values than corresponding assemblages of tropical species. Leaf size and seed size increased at low latitudes, and community phylogenetic structure was most strongly correlated with seed traits in the subtropics, reflecting dispersal and re‐colonization processes. Elevation accounted for little of the variance in community phylogenetic structure or trait variation across local and regional scales. Stable moist forest areas retained many species from ancestral rain forest lineages across a range of temporally conserved habitats; species within assemblages were less related; and rain forest assemblages had higher functional diversity, but lower niche breadth. This suggests that on average, assemblages of species in stable areas had greater trait variation and narrower distributions. Historic and recent rain forest contraction and re‐expansion can result in recolonized areas that are dominated by species that are more related (phylogenetically) than by chance, have smaller, widely dispersed seeds, and greater niche breadth (broader distributions).  相似文献   

14.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

15.
A central prediction of niche theory is that biotic communities are structured by niche differentiation arising from competition. To date, there have been numerous studies of niche differentiation in local ant communities, but little attention has been given to the macroecology of niche differentiation, including the extent to which particular biomes show distinctive patterns of niche structure across their global ranges. We investigated patterns of niche differentiation and competition in ant communities in tropical rainforests, using different baits reflecting the natural food spectrum. We examined the extent of temporal and dietary niche differentiation and spatial segregation of ant communities at five rainforest sites in the neotropics, paleotropics, and tropical Australia. Despite high niche overlap, we found significant dietary and temporal niche differentiation in every site. However, there was no spatial segregation among foraging ants at the community level, despite strong competition for preferred food resources. Although sucrose, melezitose, and dead insects attracted most ants, some species preferentially foraged on seeds, living insects, or bird feces. Moreover, most sites harbored more diurnal than nocturnal species. Overall niche differentiation was strongest in the least diverse site, possibly due to its lower number of rare species. Both temporal and dietary differentiation thus had strong effects on the ant assemblages, but their relative importance varied markedly among sites. Our analyses show that patterns of niche differentiation in ant communities are highly idiosyncratic even within a biome, such that a mechanistic understanding of the drivers of niche structure in ant communities remains elusive.  相似文献   

16.
Aim Phylogenetic and phenotypic patterns among coexisting banksias (Banksia, Proteaceae) in the infertile, fire‐prone landscapes of south‐western Australia were examined for evidence of community structuring. It was expected that closely related species would be spatially clustered (underdispersed) as a consequence of widespread recent speciation, strong edaphic fidelity and low dispersability. We also expected that edaphic filtering would result in phenotypic clustering of traits related to habitat specialization and that competitive exclusion among closely related species with similar regeneration biology and growth form would result in phenotypic overdispersion of these latter traits. Location Southwest Australian Floristic Region (SWAFR). Methods Based on published data for coexistence (richness and frequency) of Banksia species at 40 sites in the three floristic provinces, phylogenetic, soil type and morphological mean pairwise distance and mean nearest taxon distance were calculated for each site and compared with null communities. Patterns of co‐occurrence were examined at the local and subregional (provincial) scales. Results Of the 40 sites assessed, 21–30 displayed phylogenetic clustering of Banksia species (5–11 significantly) such that, overall, co‐occurring taxa were more closely related than expected by chance. Banksias in the Transitional Rainfall and Southeast Coastal Provinces were more likely to display phylogenetic clustering than in the High Rainfall Province. A significant trend for phylogenetic clustering associated with edaphic specialization (27–30 sites) was observed, as well as a significant trend for phenotypic overdispersion associated with growth form (25–28 sites). Results for regeneration biology depended on the metric used. Main conclusions We demonstrate spatial clustering of closely related banksias at the local and provincial scales, consistent with their restricted distribution (recent widespread speciation, patchy habitat availability and limited dispersability) in this geologically old and stable region. The clustering of closely related species may also be a consequence of habitat filtering linked to edaphic fidelity in the SWAFR flora, while overdispersion in growth form suggests that functional divergence favours coexistence in Banksia communities.  相似文献   

17.
The species saturation hypothesis in ground‐dwelling ant communities was tested, the relationship between local and regional species richness was studied and the possible processes involved in this relationship were evaluated in the present paper. To describe the relationship between local and regional species richness, the ground‐dwelling ant fauna of 10 forest remnants was sampled, using 10 1 m2 quadrats in each remnant. The ants were extracted from the litter by using Winkler sacs. Using regression analyses, an asymptotic pattern between local and regional species richness was detected. This saturated pattern may be related to three processes: (i) high interspecific competition; (ii) habitat species specialization; or (iii) stochastic equilibrium. It is concluded that non‐interactive processes, such as stochastic equilibrium and habitat specialization may act as factors regulating species richness in this community. The predominance of locally restricted species, in all sampled remnants, seems to indicate the occurrence of a high degree of habitat specialization by the ant species. This result is evidence for the hypothesis that community saturation has been generated by non‐interactive processes. Although ants are frequently described as highly interactive, it is possible that interspecific competition is not important in the structuring of ground‐dwelling ant communities.  相似文献   

18.
Aim In recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local‐scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local‐scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional‐scale assemblages across continents. The present work aims to address this prediction. Location North and South America. Methods We combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1° and 5° map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. Results The results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusion The results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional‐scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.  相似文献   

19.
Some studies have suggested that non‐native species invasions may threaten local diversity by creating homogenized environments. However, many studies have been based on limited or anecdotal data, and/or have failed to consider the influence of habitat modification together with possible influences of non‐native species on native ones. Hemidactylus mabouia (Squamata, Gekkonidae) likely invaded natural environments in Brazil hundreds of years ago. Yet, little is known about whether it affects native lizard fauna. We tested whether H. mabouia negatively influences native lizard species richness and abundance on a regional scale and locally through niche overlap. We analyzed species abundance and richness of nine lizard assemblages, in five of which H. mabouia occurred. We evaluated niche overlap of species in a lizard assemblage with high H. mabouia abundance through null models. Niche axes included spatial use, temporal activity and diet. Although species abundance did not differ among sites with and without the invasive species, the presence of H. mabouia seems constrained to the richer assemblages sampled. We observed significantly higher niche overlap in spatial (?obs = 0.63; ?exp = 0.37; Pobs ≥ Pexp = 0.0002) and trophic axes (?obs = 0.46; ?exp = 0.17; Pobs ≥ Pexp < 0.001), but not in activity. When we considered all axes (three‐dimensional niche), there was no overlapping among the lizard species. Our findings did not support the hypothesis that this non‐native species negatively influences other sympatric lizard species.  相似文献   

20.
If local communities are saturated with species, the relationship between local and regional species richness [the local species richness (LSR)–regional species richness (RSR) relationship] is predicted to become increasingly curvilinear at more local spatial scales. This study tested whether the LSR–RSR relationship for coral species was linear or curvilinear at three local scales across the west-central Pacific Ocean, along a regional biodiversity gradient that includes the world’s most diverse coral assemblages. The local scales comprised transects 100–2 m apart, sites 103–4 m apart and islands 104–6 m apart. The LSR–RSR relationship was never significantly different from linear at any scale. When the Chao1 estimator was used to predict true RSR and LSR, all relationships were also strongly linear. We conclude that local assemblages are open to regional influences even when the local scale is very small relative to the regional scale, and even in extraordinarily rich regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号