首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer′s disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.  相似文献   

2.
There is keen interest in the role of the isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) in protein prenylation and cell function in Alzheimer’s disease (AD). We recently reported elevated FPP and GGPP brain levels and increased gene expression of FPP synthase (FPPS) and GGPP synthase (GGPPS) in the frontal cortex of AD patients. Cholesterol levels and gene expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase were similar in AD and control samples, suggesting that homeostasis of FPP and GGPP but not cholesterol is specifically targeted in brain tissue of AD patients (Neurobiol Dis 2009 35:251–257). In the present study, it was determined if cellular levels of FPP, GGPP, and cholesterol affect beta-amyloid (Aβ) abundance in SH-SY5Y cells, expressing human APP695. Cells were treated with different inhibitors of the mevalonate/isoprenoid/cholesterol pathway. FPP, GGPP, cholesterol, and Aβ1-40 levels were determined, and activities of farnesyltransferase and geranylgeranyltransferase I were measured. Inhibitors of different branches of the mevalonate/isoprenoid/cholesterol pathway as expected reduced cholesterol and isoprenoid levels in neuroblastoma cells. Aβ1–40 levels were selectively reduced by cholesterol synthesis inhibitors but not by inhibitors of protein isoprenylation, indicating that changes in cholesterol levels per se and not isoprenoid levels account for the observed modifications in Aβ production.  相似文献   

3.
Osteoclastogenesis and osteoblastogenesis, the balancing acts for optimal bone health, are under the regulation of small guanosine triphosphate-binding proteins (GTPases) including Ras, Rac, Rho and Rab. The activities of GTPases require post-translational modification with mevalonate-derived prenyl pyrophosphates. Mevalonate deprivation induced by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (e.g., statins) prevents the activation of GTPases, suppresses the expression of the receptor for activation of nuclear factor kappa B (NFκB) ligand (RANKL) and activation of NFκB and, consequently, inhibits osteoclast differentiation and induces osteoclast apoptosis. In contrast, statin-mediated inactivation of GTPases enhances alkaline phosphatase activity and the expression of bone morphogenetic protein-2, vascular epithelial growth factor, and osteocalcin in osteoblasts and induces osteoblast proliferation and differentiation. Animal studies show that statins inhibit bone resorption and increase bone formation. The anabolic effect of statins and other mevalonate pathway-suppressive pharmaceuticals resembles the anti-osteoclastogenic and bone-protective activities conferred by dietary isoprenoids, secondary products of plant mevalonate metabolism. The tocotrienols, vitamin E molecules with HMG CoA reductase-suppressive activity, induce mevalonate deprivation and concomitantly suppress the expression of RANKL and cyclooxygenase-2, the production of prostaglandin E2 and the activation of NFκB. Accordingly, tocotrienols inhibit osteoclast differentiation and induce osteoclast apoptosis, impacts reminiscent of those of statins. In vivo studies confirm the bone protective activity of tocotrienols at nontoxic doses. Blends of tocotrienols, statins and isoprenoids widely found in fruits, vegetables, grains, herbs, spices, and essential oils may synergistically suppress osteoclastogenesis while promoting osteoblastogenesis, offering a novel approach to bone health that warrants clinical studies.  相似文献   

4.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), the rate-limiting enzymes of sterol synthesis, undergoes feedback-regulated endoplasmic reticulum degradation in both mammals and yeast. The yeast Hmg2p isozyme is subject to ubiquitin-mediated endoplasmic reticulum degradation by the HRD pathway. We had previously shown that alterations in cellular levels of the 15-carbon sterol pathway intermediate farnesyl pyrophosphate (FPP) cause increased Hmg2p ubiquitination and degradation. We now present evidence that the FPP-derived, 20-carbon molecule geranylgeranyl pyrophosphate (GGPP) is a potent endogenous regulator of Hmg2p degradation. This work was launched by the unexpected observation that GGPP addition directly to living yeast cultures caused high potency and specific stimulation of Hmg2p degradation. This effect of GGPP was not recapitulated by FPP, GGOH, or related isoprenoids. GGPP-caused Hmg2p degradation met all the criteria for the previously characterized endogenous signal. The action of added GGPP did not require production of endogenous sterol molecules, indicating that it did not act by causing the build-up of an endogenous pathway signal. Manipulation of endogenous GGPP by several means showed that naturally made GGPP controls Hmg2p stability. Analysis of the action of GGPP indicated that the molecule works upstream of retrotranslocation and can directly alter the structure of Hmg2p. We propose that GGPP is the FPP-derived regulator of Hmg2p ubiquitination. Intriguingly, the sterol-dependent degradation of mammalian HMGR is similarly stimulated by the addition of GGOH to intact cells, implying that a dependence on 20-carbon geranylgeranyl signals may be a common conserved feature of HMGR regulation that may lead to highly specific therapeutic approaches for modulation of HMGR.  相似文献   

5.
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the formation of mevalonate, the committed step in the biosynthesis of sterols and isoprenoids. The activity of HMGR is controlled through synthesis, degradation and phosphorylation to maintain the concentration of mevalonate-derived products. In addition to the physiological regulation of HMGR, the human enzyme has been targeted successfully by drugs in the clinical treatment of high serum cholesterol levels. Three crystal structures of the catalytic portion of human HMGR in complexes with HMG-CoA, with HMG and CoA, and with HMG, CoA and NADP(+), provide a detailed view of the enzyme active site. Catalytic portions of human HMGR form tight tetramers. The crystal structure explains the influence of the enzyme's oligomeric state on the activity and suggests a mechanism for cholesterol sensing. The active site architecture of human HMGR is different from that of bacterial HMGR; this may explain why binding of HMGR inhibitors to bacterial HMGRs has not been reported.  相似文献   

6.
Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose‐ and time‐dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase‐8 and ‐9; BID cleavage, cytochrome C release and PARP cleavage. Statin‐sensitive cancers expressed high levels of HMG‐CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG‐CoA reductase since mevalonate pre‐incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG‐CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies.  相似文献   

7.
The mevalonate/isoprenoids/cholesterol pathway has a fundamental role in the brain. Increasing age could be associated with specific changes in mevalonate downstream products. Other than age differences in brain cholesterol and dolichol levels, there has been little if any evidence on the short-chain isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP), as well as downstream lipid products. The purpose of the present study was to determine whether brain levels of FPP, GGPP and sterol precursors and metabolites would be altered in aged mice (23?months) as compared to middle-aged mice (12?months) and young mice (3?months). FPP and GGPP levels were found to be significantly higher in brain homogenates of 23-months-old mice. The ratio of FPP to GGPP did not differ among the three age groups suggesting that increasing age does not alter the relative distribution of the two isoprenoids. Gene expression of FPP synthase and GGPP synthase did not differ among the three age groups. Gene expression of HMG-CoA reductase was significantly increased with age but in contrast gene expression of squalene synthase was reduced with increasing age. Levels of squalene, lanosterol and lathosterol did not differ among the three age groups. Desmosterol and 7-dehydroxycholesterol, which are direct precursors in the final step of cholesterol biosynthesis were significantly lower in brains of aged mice. Levels of cholesterol and its metabolites 24S- and 25S-hydroxycholesterol were similar in all three age groups. Our novel find ings on increased FPP and GGPP levels in brains of aged mice may impact on protein prenylation and contribute to neuronal dysfunction observed in aging and certain neurodegenerative diseases.  相似文献   

8.
9.
A sensitive, nonradioactive analytical method has been developed to simultaneously determine the concentrations of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in cultured cells. Following extraction, enzyme assays involving recombinant farnesyl protein transferase or geranylgeranyl protein transferase I are performed to conjugate FPP or GGPP to dansylated peptides. The reaction products are then separated and quantified by high-performance liquid chromatography coupled to a fluorescence detector at the excitation wavelength 335 nm and the emission wavelength 528 nm. The retention times for farnesyl-peptide and geranylgeranyl-peptide are 8.4 and 16.9 min, respectively. The lower limit of detection is 5 pg of FPP or GGPP ( approximately 0.01 pmol). A linear response has been established over a range of 5-1000 pg ( approximately 0.01-2 pmol) with good reproducibility. The method has been used to determine the levels of FPP (0.125+/-0.010 pmol/10(6)cells) and GGPP (0.145+/-0.008 pmol/10(6)cells) in NIH3T3 cells. Furthermore, changes in FPP and GGPP levels following treatment of cells with isoprenoid biosynthetic pathway inhibitors were measured. This method is suitable for the determination of the concentrations of FPP and GGPP in any cell type or tissue.  相似文献   

10.
Decreased activities of both 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase are observed in the presence of sterol in the Chinese hamster ovary (CHO) fibroblast. In three different genotypes of CHO cell mutants resistant to 25-hydroxycholesterol both enzyme activities exhibit a decreased response to 25-hydroxycholesterol compared to wild-type cells. Permanently repressed levels of both HMG CoA synthase and HMG CoA reductase activities are observed in another CHO mutant, phenotypically a mevalonate auxotroph. Mevinolin, a competitive inhibitor of HMG CoA reductase, has no effect on HMG CoA synthase activity measured in vitro. Incubation of CHO cells with sublethal concentrations of mevinolin produces an inhibition of the conversion of [14C]acetate to cholesterol and results in elevated levels of both HMG CoA synthase and HMG CoA reductase activities. Studies of CHO cells in sterol-free medium supplemented with cycloheximide indicate that continuous protein synthesis is not required for the maximal expression of HMG CoA synthase activity and provide an explanation for the lack of temporal similarity between HMG CoA synthase and reductase activities after derepression. These results support the hypothesis of a common mode of regulation for HMG CoA synthase and HMG CoA reductase activities in CHO fibroblasts.  相似文献   

11.
Lovastatin inhibits a 3-hydroxy 3-methylglutaryl coenzyme A reductase and prevents the synthesis of cholesterol precursors, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), responsible for important cell signaling in cell proliferation and migration. Recently, the anti-cancer effect of lovastatin has been suggested in various tumor types. In this study, we showed that a low dose lovastatin induced senescence and G1 cell cycle arrest in human prostate cancer cells. Addition of GGPP or mevalonate, but not FPP, prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence. We found that constitutively active RhoA (caRhoA) reversed lovastatin-induced senescence in caRhoA-transfected PC-3 cells. Thus, we postulate that modulation of RhoA may be critical in lovastatin-induced senescence in PC-3 cells.  相似文献   

12.
Recently we reported that statins, the competitive inhibitors of the key enzyme regulating the mevalonate pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), decrease proliferation of human endometrial stromal (HES) cells. Furthermore, we found that simvastatin treatment reduces the number and the size of endometrial implants in a nude mouse model of endometriosis. The present study was undertaken to investigate the effect of simvastatin on HES cell invasiveness and on expression of selected genes relevant to invasiveness: matrix metalloproteinase 2 (MMP2), MMP3, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), and CD44. Because statin-induced inhibition of HMGCR reduces the production of substrates for isoprenylation-geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP)-the effects of GGPP and FPP were also evaluated. Simvastatin induced a concentration-dependent reduction of invasiveness of HES cells. This effect of simvastatin was abrogated by GGPP but not by FPP. Simvastatin also reduced the mRNA levels of MMP2, MMP3, and CD44, but increased TIMP2 mRNA; all these effects of simvastatin were partly or entirely reversed in the presence of GGPP. The present findings provide a novel mechanism of action of simvastatin on endometrial stroma that may explain reduction of endometriosis in animal models of this disease. Furthermore, the presently described effects of simvastatin are likely mediated, at least in part, by inhibition of geranylgeranylation.  相似文献   

13.
Acetoacetyl CoA thiolase and 3-hydroxy-3-methylglutaryl (HMG) CoA synthase were found almost entirely in the cytosol of Saccharomyces cerevisiae, whereas HMG CoA reductase was found almost entirely in mitochondria and further located in the matrix. Formation of all three enzymes was inhibited by cycloheximide, but not by chloramphenicol, indicating that they were synthesized in the cytosol. In anaerobically growing cells the levels of acetoacetyl CoA thiolase and HMG CoA synthase were decreased by ergosterol, whereas HMG CoA reductase levels were affected only slightly, suggesting that in yeast the enzymes responsible for synthesis of HMG CoA were regulated by ergosterol. Aerobically growing cells were essentially impermeable to ergosterol and cholesterol, whereas those growing anaerobically and requiring sterols were readily permeable. Mutants blocked in ergosterol formation were also permeable to sterols under aerobic conditions.  相似文献   

14.
Isoprenoids influence expression of Ras and Ras-related proteins   总被引:4,自引:0,他引:4  
Mevalonate depletion by inhibition of hydroxymethylglutaryl coenzyme A reductase impairs post-translational processing of Ras and Ras-related proteins. We have previously shown that this mevalonate depletion also leads to the upregulation of Ras, Rap1a, RhoA, and RhoB. This upregulation may result from global inhibition of isoprenylation or depletion of key regulatory isoprenoid species. Studies utilizing specific isoprenoid pyrophosphates in mevalonate-depleted cells reveal that farnesyl pyrophosphate (FPP) restores Ras processing and prevents RhoB upregulation while geranylgeranyl pyrophosphate (GGPP) restores Rap1a processing and prevents RhoA and RhoB upregulation. Either FPP or GGPP completely prevents lovastatin-induced upregulation of RhoB mRNA. Inhibition of FPP or squalene synthase allowed for the further identification of the putative regulatory species. Studies involving the specific isoprenyl transferase inhibitors FTI-277 and GGTI-286 demonstrate that selective inhibition of protein isoprenylation does not mimic lovastatin's ability to increase Ras and RhoA synthesis, decrease Ras and RhoA degradation, increase RhoB mRNA, or increase total levels of Ras, Rap1a, RhoA, and RhoB. In aggregate, these findings reveal a novel role and mechanism for isoprenoids to influence levels of Ras and Ras-related proteins.  相似文献   

15.
To evaluate the effects of sterol regulatory element-binding proteins (SREBPs) on the expression of the individual enzymes in the cholesterol synthetic pathway, we examined expression of these genes in the livers from wild-type and transgenic mice overexpressing nuclear SREBP-1a or -2. As estimated by a Northern blot analysis, overexpression of nuclear SREBP-1a or -2 caused marked increases in mRNA levels of the whole battery of cholesterogenic genes. This SREBP activation covers not only rate-limiting enzymes such as HMG CoA synthase and reductase that have been well established as SREBP targets, but also all the enzyme genes in the cholesterol synthetic pathway tested here. The activated genes include mevalonate kinase, mevalonate pyrophosphate decarboxylase, isopentenyl phosphate isomerase, geranylgeranyl pyrophosphate synthase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, lanosterol synthase, lanosterol demethylase, and 7-dehydro-cholesterol reductase. These results demonstrate that SREBPs activate every step of cholesterol synthetic pathway, contributing to an efficient cholesterol synthesis.  相似文献   

16.
Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. These effects have been attributed to the depletion of geranylgeranyl pyrophosphate (GGPP). In this study, we tested whether specific inhibition of GGPP synthase (GGPPS) with digeranyl bisphosphonate (DGBP) would similarly lead to increased osteoblast differentiation. DGBP concentration dependently decreased intracellular GGPP levels in MC3T3‐E1 pre‐osteoblasts and primary rat calvarial osteoblasts, leading to impaired Rap1a geranylgeranylation. In contrast to our hypothesis, 1 µM DGBP inhibited matrix mineralization in the MC3T3‐E1 pre‐osteoblasts. Consistent with this, DGBP inhibited the expression of alkaline phosphatase and osteocalcin in primary osteoblasts. By inhibiting GGPPS, DGBP caused an accumulation of the GGPPS substrate farnesyl pyrophosphate (FPP). This effect was observed throughout the time course of MC3T3‐E1 pre‐osteoblast differentiation. Interestingly, DGBP treatment led to activation of the glucocorticoid receptor in MC3T3‐E1 pre‐osteoblast cells, consistent with recent findings that FPP activates nuclear hormone receptors. These findings demonstrate that direct inhibition of GGPPS, and the resulting specific depletion of GGPP, does not stimulate osteoblast differentiation. This suggests that in addition to depletion of GGPP, statin‐stimulated osteoblast differentiation may depend on the depletion of upstream isoprenoids, including FPP. J. Cell. Biochem. 112: 1506–1513, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used cholesterol-lowering drugs. Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. The objective here was to elucidate the molecular mechanism by which statins induce lymphoma cells death. Statins (atorvastatin, fluvastatin and simvastatin) treatment enhanced the DNA fragmentation and the activation of proapoptotic members such as caspase-3, PARP and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells, which was accompanied by inhibition of cell survival. Both increase in levels of reactive oxygen species (ROS) and activation of p38 MAPK and decrease in mitochondrial membrane potential and activation of Akt and Erk pathways were observed in statin-treated lymphoma cells. Statin-induced cytotoxic effects, DNA fragmentation and changes of activation of caspase-3, Akt, Erk and p38 were blocked by antioxidant (N-acetylcysteine) and metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggests that HMG-CoA reductase inhibitors induce lymphoma cells apoptosis by increasing intracellular ROS generation and p38 activation and suppressing activation of Akt and Erk pathways, through inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.  相似文献   

18.
S Azhar  Y D Chen  G M Reaven 《Biochemistry》1984,23(20):4533-4538
These studies were done to examine the effect of gonadotropin on rat luteal 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (the rate-limiting step in cholesterol biosynthesis) in ovaries of pregnant mare's serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) primed rats. Administration of hCG stimulated HMG CoA reductase activity in a time- and dose-dependent manner: significant increases were noted within 4 h, with maximum effects (30-40-fold increases) seen 24 h after hCG (25 IU) administration. This effect was specific in that only LH, of several hormones tested, was as effective as hCG in stimulating HMG CoA reductase activity, and no change in the activity of either liver microsomal HMG CoA reductase or luteal microsomal NADPH-cytochrome c reductase was seen after hCG. The gonadotropin-induced increase in HMG CoA reductase activity seemed to be due to a net increase in enzyme activity, not to a change in the phosphorylated/dephosphorylated state of the enzyme. Pretreatment of animals with aminoglutethimide, an inhibitor of the conversion of cholesterol to steroid (pregnenolone), prevented the hCG-induced rise in HMG CoA reductase activity, whereas treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), which depletes cellular cholesterol content, led to striking increases in enzyme activity. However, the combined effects of 4-APP and hCG were additive, suggesting that the stimulating effect of hCG on HMG CoA reductase activity is not entirely due to a depletion of cellular sterol content of luteinized ovaries. Similarly, cholesteryl ester and cholesterol syntheses as measured by [14C]acetate conversion were also increased by hCG and 4-APP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Epidemiological evidence suggests that long term treatment with hydroxymethylglutaryl-CoA reductase inhibitors, or statins, decreases the risk for developing Alzheimer disease (AD). However, statin-mediated AD protection cannot be fully explained by reduction of cholesterol levels. In addition to their cholesterol lowering effects, statins have pleiotropic actions and act to lower the concentrations of isoprenoid intermediates, such as geranylgeranyl pyrophosphate and farnesyl pyrophosphate. The Rho and Rab family small G-proteins require addition of these isoprenyl moieties at their C termini for normal GTPase function. In neuroblastoma cell lines, treatment with statins inhibits the membrane localization of Rho and Rab proteins at statin doses as low as 200 nm, without affecting cellular cholesterol levels. In addition, we show for the first time that at low, physiologically relevant, doses statins preferentially inhibit the isoprenylation of a subset of GTPases. The amyloid precursor protein (APP) is proteolytically cleaved to generate beta-amyloid (Abeta), which is the major component of senile plaques found in AD. We show that inhibition of protein isoprenylation by statins causes the accumulation of APP within the cell through inhibition of Rab family proteins involved in vesicular trafficking. Moreover, inhibition of Rho family protein function reduces levels of APP C-terminal fragments due to enhanced lysosomal dependent degradation. Statin inhibition of protein isoprenylation results in decreased Abeta secretion. In summary, we show that statins selectively inhibit GTPase isoprenylation at clinically relevant doses, leading to reduced Abeta production in an isoprenoid-dependent manner. These studies provide insight into the mechanisms by which statins may reduce AD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号