首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The effect of peptide conformational constraint on the peptide permeation across the model membranes was examined by determining the permeability of pairs of cyclic and acyclic peptides related to c[d-Pen2, d-Pen5] enkephalin (DPDPE). The peptides were cyclized by formation of an intramolecular disulfide bridge between the second and fifth residues composed of either d-penicillamine or cysteine. In each case the acyclic peptide was three to seven times more permeable than corresponding cyclic peptide. The possibility that the differences in permeability of cyclic and acyclic peptides is based on the greater conformational freedom of the acyclic peptides in the presence of membrane was examined in more detail by isothermal titration calorimetric studies of Trp6-DPDPE and its acyclic analog. The membrane binding of the acyclic peptide is a more exothermic process than binding of its cyclic Trp6-DPDPE. The transfer of acyclic peptide from water to membrane is an enthalpy driven process, whereas the transfer of the cyclic peptide is driven by entropy.  相似文献   

10.
11.
12.
Tumors are dependent on oncogenic proteins for their maintenance and survival. The ideal cancer therapy would include drugs that specifically target these proteins. Many such proteins function through interfaces that can be difficult to target effectively with small molecules. However, recent advances in cell-permeable peptide technology, improving cellular penetration and stability, raise the possibility that specific peptide interference of oncogenic proteins could be successfully translated to the clinic. Several active anti-tumor peptides were recently described. For example, a stable peptide inhibitor of the Hsp90 ATP-binding pocket killed a wide range of tumors in vitro and in vivo, and a peptide inhibitor of the BCL6 oncoprotein was active in B-cell lymphomas; both peptides functioned without toxicity to normal tissues.  相似文献   

13.
14.
A trypsin-activated protein kinase has been isolated from rat liver using a peptide analogue of ribosomal protein S6 as a substrate in kinase assays. The structure of the peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, was based on a region of S6 containing both an insulin- and cyclic AMP-regulated phosphorylation site. The trypsin-activated protein kinase phosphorylated a corresponding site in the peptide analogue and ribosomal protein S6 that was distinct from the preferred site for cyclic AMP-dependent protein kinase. Ribosomal S6 contained at least one other major site for the trypsin-activated protein kinase.  相似文献   

15.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

16.
Hydrazones of a 6-hydrazinonicotinyl-modified cyclic peptide IIb/IIIa receptor antagonist were prepared in order to protect the hydrazine moiety from reaction with trace aldehyde and ketone impurities encountered during the process of manufacturing and compounding lyophilized kits used in radiolabeling with (99m)Tc. Hydrazones were prepared by either a direct reaction of the 6-hydrazinonicotinyl-modified cyclic peptide with carbonyl compounds or by conjugation of the cyclic peptide with hydrazones of succinimidyl 6-hydrazinonicotinate. Stability of the hydrazones was evaluated by treatment with formaldehyde. Hydrazones derived from simple aliphatic aldehydes underwent an exchange reaction with formaldehyde, while hydrazones of aromatic aldehydes and ketones provided the greatest level of stability when challenged with formaldehyde. We have been successful in protecting 6-hydrazinonicotinyl-modified cyclic peptides from reacting with formaldehyde, while still allowing sufficient reactivity for radiolabeling with (99m)Tc. The hydrazones of succinimidyl 6-hydrazinonicotinate are convenient and general reagents for forming 6-hydrazinonicotinyl conjugates with amino-functionalized bioactive molecules.  相似文献   

17.
18.
19.
Dong W  Liu Y  Peng J  Chen L  Zou T  Xiao H  Liu Z  Li W  Bu Y  Qi Y 《The Journal of biological chemistry》2006,281(36):26029-26040
Our previous studies have revealed that the signaling protein BCL10 plays a major role in adaptive immunity by mediating NF-kappaB activation in the LPS/TLR4 pathway. In this study, we show that IRAK-1 acts as the essential upstream adaptor that recruits BCL10 to the TLR4 signaling complex and mediates signaling to NF-kappaB through the BCL10-MALT1-TRAF6-TAK1 cascade. Following dissociation from IRAK-1, BCL10 is translocated into the cytosol along with TRAF6 and TAK1, in a process bridged by a direct BCL10-Pellino2 interaction. RNA interference against MALT1 markedly reduced the level of NF-kappaB activation stimulated by lipopolysaccharide (LPS) in macrophages, which suggests that MALT1 plays a major role in the LPS/TLR4 pathway. MALT1 interacted with BCL10 and TRAF6 to facilitate TRAF6 self-ubiquitination in the cytosol, which was strictly dependent on the dissociation of BCL10 from IRAK-1. We show that BCL10 oligomerization is a prerequisite for BCL10 function in LPS signaling to NF-kappaB and that IRAK-1 dimerization is an important event in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号