首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maternal RNA of sea urchin eggs and embryos was analyzed for short poly(A) sequences by digesting hybrids formed between [3H]poly(U) and poly(A) with RNase at 4°C. When the undigested [3H]poly(U) is precipitated with CTAB, all (A)n tracts longer than 6 nucleotides are detected. This assay revealed a poly(A) content severalfold higher than is obtained with a similar assay using RNase at higher temperatures. On polyacrylamide gel electrophoresis, most of the previously undetected (A)n tracts ran as a peak of oligo(A) of less than 20 nucleotides which accumulated at the dye front. The oligo(A) sequences were resolved into a single peak of (A)10 when sized on Sephadex G100. These (A)10 sequences were associated with large mRNA-sized molecules of about 3000 nucloetides average length which comprised 0.5 to 2% of the total maternal RNA. However, the (A)10 sequences were not in mRNA molecules containing 3′-terminal poly(A) of 50–120 nucleotides nor did they remain in RNA that entered polysomes upon fertilization. However, hybridization studies showed that all sequences represented in the maternal poly(A)-containing RNA appeared to be present in the RNA molecules containing only (A)10 sequences. The results suggest that the (A)10-containing RNA might be incompletely processed mRNA precursor-like molecules.  相似文献   

2.
The mRNA species which exist in the HeLa cell polyribisomes in a form devoid of A sequences longer than 8 nucleotides constitute the poly(A)-free class of mRNA. The rapidly labelled component of this mRNA class shares no measurable sequence homology with poly(A)-containing RNA. If poly(A)-free mRNA larger than 12 S labelled for 2 h in vivo is hybridized with total cellular DNA, it hybridizes primarily with single-copy DNA. When a large excess of steady poly(A)-containing RNA is added before hybridization of labelled poly(A)-free RNA, no inhibition of hybridization occurs. This indicates the existence of a class of poly(A)-free mRNA with no poly(A)-containing counterpart. Some mRNA species can exist solely as poly(A)-containing mRNAs. These mRNAs in HeLa cells are found almost exclusively in the mRNA species present only a few times per cell (scarce sequences). Some mRNA species can exist in two forms, poly(A)containing and lacking, as evidenced by the translation data in vitro of Kaufmann et al. [Proc. Natl Acad. Sci. U.S.A. 74, 4801--4805 (1977)]. In addition, if cDNA to total poly(A)-containing mRNA is fractionated into abundant and scarce classes, 47% of the scarce class cDNA can be readily hybridized with poly(A)-free mRNA. 10% of the abundant cDNA to poly(A)-containing mRNA will hybridize with poly(A)-free sequences very rapidly while the other 90% hybridize 160 times more slowly, indicating two very different frequency distributions. The cytoplasmic metabolism of these three distinct mRNA classes is discussed.  相似文献   

3.
Three fractions of poly(A)-containing RNA were separated from total rat liver RNA using poly(U)-Sepharose 4B affinity chromatography. The poly(A)-containing RNA fractions were released by thermal elution. Fraction 1, eluted under the mildest conditions, and had poly(A) tracts of approx. 200 AMP units in length which appeared to be associated with poly(U) sequences of 20-50 UMP in length. Fraction 1 appeared to be present mainly in the nucleus and, its size distribution was similar to that of fractions 2 and 3. Fractions 2 and 3 eluted at higher temperatures and were associated mainly with polysomal and microsomal fractions. Poly(U) sequences were absent in fractions 2 and 3 while their poly(A) sequences had a size distribution characteristic of those reported in the mRNA of other organisms.  相似文献   

4.
B M Tyler  J M Adams 《Gene》1980,10(2):147-155
We have developed a procedure for enriching DNA for specific sequences that is based on R-looping (Thomas et al., 1976). R-loops are formed with the DNA using mRNAs containing the sequence of interest and then isolated on poly(U)-sepharose via the poly(A) tail of the mRNA. Model experiments showed that plasmid DNA containing a cDNA copy of an immunoglobulin kappa chain mRNA could be selectively retrieved using this procedure. Approx. 5-10% of the kappa sequences in mouse embryo DNA could be recovered by R-looping, while non-specific binding of mouse DNA to the poly(U)-sepharose column was 0.03-0.04%. This represents a 100-200-fold enrichment of mouse genomic kappa sequences. We have also used the procedure to rapidly screen a mouse clone library for immunoglobulin heavy chain genes. DNA from the clone library was enriched 100-200-fold using immunoglobulin heavy chain mRNAs, and the enriched DNA repackaged in vitro to recover the phage.  相似文献   

5.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

6.
A simple procedure, useful for quantitative and qualitative assays of poly(A)-containing RNA and poly(A), as well as for preparative purposes, is described. Glass-fiber filters with immobilized poly(U), a well-known technique for absorption of poly(A)-containing RNA, is combined with electrophoresis in a gel slab of agarose. In front of each of the two troughs in a gel slab, glass-fiber filters are inserted, one of which is impregnated with poly(U). Two identical RNA samples, e.g., split samples of total RNA from salivary glands of Chironomus tentans, are applied to the troughs and are moved electrophoretically across two different filters. The electrophoresis is conducted under conditions which promote the formation of duplexes between absorbed poly(U) and moving poly(A). While the passage of RNA chains across the control filter may take place essentially freely, RNA molecules that contain poly(A) hybridize with poly(U) fixed in the glass-fiber filter and become trapped there. The difference between resulting gel profiles [pattern of the total RNA minus the pattern of RNA not containing poly(A)] yields the electrophoretic distribution of poly(A)-containing RNA. In addition, poly(A)-containing RNA can be eluted from the poly(U) filter with formamide and subjected to electrophoresis without a subsequent precipitation in ethanol. No measurable quantities of ribosomal RNA or tRNA are retained on the poly(U) glass-fiber filters. The hybridization technique enables a quantitative retention of poly(A) molecules representing a wide range of chain lengths.  相似文献   

7.
A positive correlation between poly(U) misreading and efficiency of poly(dT) translation has been revealed in cell-free systems from wild-type E coli and streptomycin--resistant mutants with altered ribosomal protein S12. Different factors promoting misreading of poly(U) such as aminoglycoside antibiotics and Mg2+ ions also stimulate poly(dT) translation. The effect of the antibiotics on poly(U) translation efficiency and misreading as well as on poly(dT) decoding is characterised by the same order: neomycin greater than kanamycin greater than streptomycin. S12 mutants ribosomes are less erroneous in poly(U) translation and less efficient in poly(dT) decoding. The data obtained are in good agreement with the hypothesis of stereospecific stabilization of codon-anticodon complexes by the ribosome decoding centre.  相似文献   

8.
Poly(ADP-ribosyl)ation of nuclear proteins was several-fold higher in the pachytene spermatocytes than in the premeiotic germ cells of the rat. Among the histones of the pachytene nucleus, histone subtypes H2A, H1 and H3 were poly(ADP-ribosyl)ated. Based on the immunoaffinity fractionation procedure of Malik, Miwa, Sugimara & Smulson [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2554-2558] we have fractionated DNAase-II-solubilized chromatin into poly(ADP-ribosyl)ated chromatin (PAC) and non-poly(ADP-ribosyl)ated chromatin (non-PAC) domains on an anti-[poly(ADP-ribose)] IgG affinity matrix. Approx. 2.5% of the pachytene chromatin represented the PAC domains. A significant amount of [alpha-32P]dATP-labelled pachytene chromatin (labelled in vitro) was bound to the affinity matrix. The DNA of pachytene PAC domains had internal strand breaks, significant length of gaps and ligatable ends, namely 5'-phosphoryl and 3'-hydroxyl termini. On the other hand, the PAC domains from 18 h regenerating liver had very few gaps, if any. The presence of gaps in the pachytene PAC DNA was also evident from thermal denaturation studies. Although many of the polypeptides were common to the PAC domains of both pachytene and regenerating liver, the DNA sequences associated with these domains were quite different. A 20 kDa protein and the testis-specific histone H1t were selectively enriched in the pachytene PAC domains. The pachytene PAC domains also contained approx. 10% of the messenger coding sequences present in the DNAase-II-solubilized chromatin. The pachytene PAC domains, therefore, may represent highly enriched DNA-repair domains of the pachytene nucleus.  相似文献   

9.
Kinetic studies of the interaction of Hg(II) with polyribonucleotides have been used to investigate structural fluctuations of the bases in nucleic acids. The reaction of Hg(II) with poly(A)-poly(U) occurs in two phases which differ in time scale by a factor of about 100. The slow phase is first order and exhibits cooperativity or autocatalytic kinetics. The rate is found to increase as decreasing chain length of poly(U) is used to make the double helical complex. The reaction appears to initiate at the ends of poly(U) strands and may be associated with a molecular rearrangement which results in strand separation with Hg(II) being linked only to uridine. The fast reaction phase is second order ans shows little cooperative behavior. Protons are released at this stage indicating alteration of the double helix. The measured second-order rate constant is nearly three orders of magnitude smaller than that found for poly(U) alone. This rate difference suggests that the reactive sites are blocked by double helix formation, and become available for reaction with Hg(II) only through a structural fluctuation. The ratio of rate constants for the reaction of Hg(II) with poly(U) and poly(A)-poly(U) was used to place an upper limit on the equilibrium constant for the structural fluctuation of 2 times 10- minus 3 at 15 degrees and 0.5 M NaClO4. The heat of the "breathing" reaction can be estimated to be similar to 9 kcal/mol from comparison of the temperature coefficient of the reaction with poly(U) to that with poly(A)-poly(U).  相似文献   

10.
The slow kinetics of annealing processes in multistranded nucleic acids is spectrophotometrically investigated using poly(A)·2poly(U) as a model system. The absorbance changes at specific wavelengths show that double-helical (A·U) base pairs appear as transient intermediates. The annealing process is identified by the enlargement of triple-helical sequences at the cost of (A·U) base pairs and unpaired (U) residues. A large time range in the reorganization of mismatched chain configurations is characterized by a logarithmic dependence on time. This observation is quantitatively described by a kinetic model developed by Jackson. In Jackson's model the rate-limiting process in the slow annealing phase of maximizing triple-helical sequences, is the removal of strand entanglements, knots, and hairpin loops by complete unwinding of those helical stretches which stabilize the mismatched configurations. The results of the present study are briefly discussed in terms of optimum conditions for hybridization experiments and for the preparation of polynucleotide complexes commonly used to produce interferons.  相似文献   

11.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U).  相似文献   

12.
We have used a photoreactive cross-linking reagent, poly(A/8-N3-A) (a poly(A) of average molecular mass of 100 kDa in which 5-10% of the A residues are replaced by 8-N3-A), to label poly(A) binding proteins of rat liver nuclear envelopes. This reagent was prepared by polymerizing a mixture of ADP and 8-N3-ADP with polynucleotide phosphorylase. The purified poly(A) was labeled in the 5'-position with a 32P group. In nuclear envelopes prepared by a low salt DNase I procedure, the poly(A/8-N3-A) labeled a protein-nucleic acid complex of approximately 270 kDa, which on degradation with RNase U2 or NaOH at pH 10 yielded two polypeptides of approximately 50 and 30 kDa. These photoreaction products were markedly decreased when resealed nuclear envelopes or non-nuclear envelope proteins were irradiated in the presence of poly(A/8-N3-A). The affinity labeling was intensified when resealed vesicles were made leaky by freezing or ultrasonication, suggesting that the poly(A) binding proteins are accessible from the nucleoplasmic but not the cytoplasmic face of the envelope. Moreover binding was specific for poly(A). Alternative reagents, random poly(A/8-N3-A,C,G,U) of about 100 kDa and poly(dA) (molecular mass between 350 and 515 kDa), showed a very low affinity for poly(A) recognition proteins in the low salt DNase I-treated nuclear envelopes; the 270-kDa band was labeled only weakly. The binding site was not protected by poly(A,C,G,U), weakly by poly(dA), and distinctly by poly(A).  相似文献   

13.
The interactions of amino acid esters with poly(A)x2poly(U) and poly(A)xpoly(U) have been investigated by means of thermal denaturation of these polynucleotides. The esters under consideration raised the melting point, revealing the preferable binding to helical polynucleotide structures. The melting point shifts demonstrate the following sequence of the stabilities of these complexes: Arg greater than Lys much greater than His greater than Met greater than Ser greater than Gly. The same stability order is observed when studying the polynucleotide renaturation in the presence of esters. This order coincides with that previously obtained for the nucleotide base--amino acid ester complexes excepting basic amino acid esters. The ester interactions with poly(A) and poly(U) also reveal the specificity of monomer--monomer interactions. Some dynamic contributions into the studied specificity are also discussed.  相似文献   

14.
Rapidly labelled mRNAs were isolated from informosomes and polyribosomes of imbibed wheat embryos. The distribution of poly(A) sequences in these fractions were studied by poly(U) Sepharose chromatography. It was shown that informosomes contain 11% polyadenylated mRNA while polyribosomes--38%. This fact suggests the important role of poly(A) sequences for translation of mRNA.  相似文献   

15.
W M Wood  J C Wallace  M Edmonds 《Biochemistry》1985,24(14):3686-3693
Oligo(uridylic acid)-containing [oligo(U+)] RNA was isolated from poly(adenylic acid)-containing [poly(A+)] mRNA from HeLa cells by using either formaldehyde pretreatment or poly(A) removal, both of which resulted in increased accessibility of oligo(U)-rich sequences to a poly(A)-agarose affinity column. In this report, we compared the sequence content of oligo(U+) RNA with that of molecules lacking oligo(U) [oligo(U-) RNA] by their relative hybridization to cDNA reverse-transcribed from poly(A+) mRNA and by comparison of their in vitro translation products synthesized in a rabbit reticulocyte lysate. Formaldehyde-modified poly(A+) RNA, treated to remove the formol adjuncts, was inactive as a template for in vitro protein synthesis; consequently, only depolyadenylated RNA, which retains its translatability, could be used in the translation studies. The hybridization kinetic experiments revealed that oligo(U+) RNA contained most of the sequence information present in oligo(U-) RNA but at a reduced level (ca. 25%), the majority of the oligo(U+) RNA sequences being poorly represented in the cDNA. This result was supported by one- and two-dimensional gel analysis of their in vitro translation products which showed that oligo(U+) RNA, although less effective as a template for translation than oligo(U-) RNA, coded for proteins, the most abundant of which were encoded by rare messages not highly represented in oligo(U-) RNA or the total poly(A+) RNA. Although some minor products were synthesized by both oligo(U+) and oligo(U-) RNA, at least 33 proteins were unique to or highly enriched in the pattern of products directed by oligo(U+) RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

18.
F H Wilt 《Cell》1977,11(3):673-681
  相似文献   

19.
The poly(A) content of RNA extracted from four stages of immature oocytes, mature oocytes, and cleavage embryos through the eight-cell stage was determined by hybridization with [3H]-poly(U). During oogenesis the poly(A) content per cell gradually increases from 0.007 pg of poly(A)/cell in the 10- to 39-μm oocytes to 0.20 pg of poly(A)/cell in the 125-μm mature oocytes. After fertilization there is an additional increase to approximately 1.1 pg of poly(A)/embryo at the two-cell stage which is followed by a slight decline between the two- and eight-cell stages. Most of the increase in poly(A) after fertilization occurs in a 45-min interval coincident with the appearance of the polar bodies. The size distribution of the poly(A) in RNA from the different stages of development was determined based on the length of RNase-resistant poly(U) obtained from poly(U)-poly(A) hybrids. The size distribution of the poly(A) sequences is constant through each stage of development which indicates that the increase in the poly(A) content of the cells is the result of polyadenylation of new RNA sequences.  相似文献   

20.
A two-fold increase in polyadenylate [poly(A)] content occurs between fertilization and the two-cell stage in sea urchin zygotes. In this report the role of this cytoplasmic polyadenylation process in the provision of binding sites for poly(A)-associated proteins during early development of Lytechinus pictus is evaluated. Protein-associated poly(A) sequences, from ribonuclease-treated, post-mitochondrial supernatants of various developmental stages, were collected by nitrocellulose filtration and quantified by 3H-poly(U) complex formation. The proportion of protein-associated poly(A) rose from about 27% to about 60% of the total poly(A), on a nucleotide basis, during the period between fertilization and the eight-cell stage. However, the actual increase in number of poly(A) sequences associated with protein was more extensive, about 2.5-fold, since protein-associated poly(A) sequences average about 45 nucleotides longer than free poly(A). The protein-associated poly(A) of eggs and zygotes is found in two types of protease-sensitive complexes which sediment at 8–12 S and 15–20 S. The 8–12 S complex appears to be selectively increased in amount following fertilization. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the poly(A) protein complex fraction indicates the presence of 87,000 and 130,000 molecular weight polypeptides in both eggs and zygotes. It is concluded that quantitative, but not qualitative, alterations in the proportion of protein-associated poly(A) accompanies post-fertilization cytoplasmic polyadenylation in sea urchin zygotes. The attachment of specific proteins to the 3'terminus of maternal RNAs may be involved in their subsequent activities during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号