首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
We compared in rat whole-embryo culture the morphological changes elicited by valproic acid (VPA) with those elicited by trans-retinoic acid (RA). Rat embryos explanted on day 9.5 of gestation were treated on day 10 with RA or VPA at concentrations producing equivalent reductions in embryonic protein. The concentrations selected for morphological assessment by scanning and transmission electron microscopy, 2.3 and 800 microM, respectively, for RA and VPA, produced approximately a 50% incidence of abnormally open anterior neuropores in initial range-finding experiments in the culture system. Protein and DNA analyses were also performed on corresponding groups of embryos at three different doses. With concurrent control groups used as reference standards, the two treatment groups were compared for differences in external and internal morphology, protein and DNA contents, and growth indices. While certain variables responded similarly in the two treatment groups, e.g., the growth variables, protein and DNA contents, each drug produced selective morphological effects. Whereas treatment with RA produced underdeveloped branchial arches, symmetrically cleft cranial defects resulting in openings in rhombencephalic and prosencephalic regions, and exteriorized neural tissue in the caudal neuropore region, VPA produced irregular clefts with wavy margins along the entire length of the neural tube, and an open caudal neuropore without eversion of the neuroepithelium, while producing no detectable effect on the branchial arches. The similar effects of these two drugs on protein and DNA contents suggest comparable degrees of overall toxicity; however, the dissimilar effects on neural tube and branchial arches, coupled with the large difference in concentration of the drug required to produce the effects, add to the evidence that their mechanisms for elicitation of abnormal development are qualitatively different.  相似文献   

2.
A Jurand 《Teratology》1985,31(2):235-240
Diamorphine hydrochloride, methadone hydrochloride, and the synthetic enkephalin analogue FK 33-824 are potent teratogens for the central nervous system in mouse embryos. They induce the "neurotropic syndrome of malformations," which is restricted to the central nervous system if administered during the critical period of neural tube closure. Pretreatment with corresponding equimolecular doses of the antagonist naloxone hydrochloride applied 30 minutes before treatment with the opiate agonists abolishes the major severe malformations, i.e., exencephaly, craniorachischisis, and brachyury, and reduces the number of cases of kinking of the spinal cord. Dilation of the fourth brain ventricle remains unaffected. It is suggested that the mechanism of interference in the teratogenicity of the opiates by naloxone hydrochloride reported here is based on competition for opiate receptors. In general, these observations are regarded as evidence that the pharmacological affinity of opiate agonists to receptors in the central nervous system is responsible for the malformations caused by them in this system.  相似文献   

3.
Out of a sample of fifteen neurotropic drugs consisting of seven antidepressants and anti-psychotics, two antianxiety drugs, one anticonvulsant, three opiates and two synthetic analgesics, twelve were found to be teratogenic for mouse embryos, causing malformations of the central nervous system. After single injections of the teratogenic dose administered at the very beginning of the ninth day of gestation, four days later, i.e. in 13-day-old embryos, the induced defects appeared to make up a recurring syndrome of malformations which consists of several abnormalities present in various frequencies either individually or in combination in the same embryos. These malformations are: exencephaly, craniorachischisis, cervical and thoraco-lumbar myeloschisis, hydrocephalic dilatation of the fourth brain ventricle, Z-shaped kinking of the spinal cord and lumbar hydromyelia. In addition, after administration of some of the drugs, branchyury or anury with or without lumbar myeloaplasia were recorded.
In general the results reported here seem to suggest that because of their possible affinity neurotropic drugs are potentially teratogenic for the embryonic central nervous system if applied at the time of the neural tube closure although it is known that there are drugs in this group which do not cause any malformations of the central nervous system and that many non-neurotropic agents do cause such malformations. Secondly, the results seem to suggest also that the position of the malformations along the cerebro-spinal axis may be depending to some extent on the pharmacological properties of the drugs tested. These conjectures are treated here as entirely provisional pending further investigations.  相似文献   

4.
Numerous studies have suggested that single-day intraperitoneal (IP) injection of inorganic arsenic results in failure of neural tube closure and other malformations in rats, hamsters, and mice. Most of these studies involved treatment of limited numbers of animals with maternally toxic doses of arsenic (generally As(V)), without defining a dose-response relationship. In the present Good Laboratory Practice-compliant study, sodium arsenate (As(V)) was administered IP and arsenic trioxide (As(III)) was administered either IP or orally (by gavage) on gestational day 9 to groups of 25 mated Crl:CD(R)(SD)BR rats. Only at dose levels that caused severe maternal toxicity, including lethality, did IP injection of arsenic trioxide produce neural tube and ocular defects; oral administration of higher doses of arsenic trioxide caused some maternal deaths but no treatment-related fetal malformations. In contrast, IP injection of similar amounts of sodium arsenate (based on the molar amount of arsenic) caused mild maternal toxicity but a large increase in malformations, including neural tube, eye, and jaw defects. In summary, neural tube and craniofacial defects were observed after IP injection of both As(V) and As(III); however, no increase in malformations was seen following oral administration of As(III), even at maternally lethal doses. These results demonstrate that the frequently cited association between prenatal exposure to inorganic arsenic and malformations in laboratory animals is dependent on a route of administration that is not appropriate for human risk assessment.  相似文献   

5.
This study reports the in vitro influence of morphine, dextromoramide, levomoramide, and methionine-enkephalin upon normal human T blood lymphocytes by using the active and total rosette tests. Morphine and dextromoramide inhibited the percentage of active T rosettes. This effect was completely reversed in the presence of naloxone, their specific antagonist. The specificity was further demonstrated by the absence of the effect of levomoramide, the inactive enantiomere, upon the rosette system. Methionine-enkephalin increased the percentage of active T rosettes. This effect was specifically inhibited by naloxone. These observations suggest that normal human blood T lymphocytes bear surface receptor-like structures for morphine, dextromoramide, and methionine-enkephalin. Such findings may provide a link between the central nervous system and the immune system.  相似文献   

6.
Neural tube defects are one of the commonest human birth defects, with more than 0.5% of some populations affected. Mouse models are being used in an attempt to identify genes that could be involved in these malformations. Only two mouse mutations are known to lead to craniorachischisis, failure of closure of almost the entire neural tube. Two recent papers report that the gene for one of these, Loop-tail, has now been identified and sequenced.1, 2 It has been given the designation Ltap/Lpp1 and appears to function in floor plate formation. It will be of great interest to investigate the role of this gene in human neural tube defects.  相似文献   

7.
J G Bannigan 《Teratology》1985,32(2):229-239
The effects of 500 and 300 mg/kg bromodeoxyuridine (BUdR) on the process of fusion of the neural folds were tested after injection into pregnant mice on day 8 of gestation (192 hours postcoitum). Various doses of the natural nucleoside, thymidine (TdR), were also tested. Both doses of BUdR retarded growth to the same extent, but only the larger dose caused neural tube defects in 28.8% of embryos. Treatment with the larger dose also caused extensive cell necrosis to appear in the neuroepithelium of the neural folds between 12 and 15 hours after treatment. No changes were detectable with the light microscope up to this time. Measurement of the cell generation time in treated and control embryos indicated that the BUdR prolonged the cycle by about 2 hours and that the dying cells were in the second DNA synthetic phase following incorporation of the analog. Treatment with the smaller dose of BUdR caused minimal cell necrosis. This was taken as evidence for the importance of cell necrosis in the pathogenesis of BUdR-induced neural tube defects. Treatment with excess TdR did not cause either neural tube defects or cell necrosis, and a dose of TdR equimolar with the large dose of BUdR (400 mg/kg TdR) did not retard growth. Doses of 800 and 1,200 mg/kg TdR retarded growth to the same extent as BUdR. The administration of an equimolar amount of TdR, along with the teratogenic dose of BUdR, prevented the occurrence of cell necrosis and neural tube defects. When treatments were given on day 9 of gestation, 500 mg/kg BUdR caused cell necrosis in the neuroepithelium about 15 hours after treatment but no neural tube defects were produced by day 9 after treatment. It is suggested that in this case cell necrosis occurred too late to interfere with neural fold fusion. It was concluded that the ability of BUdR to cause exencephaly in mouse embryos was due to cell necrosis in the neuroepithelium.  相似文献   

8.
Previously we have shown that all SELH/Bc mouse embryos close their anterior neural tubes by an abnormal mechanism and that 10-20% of SELH/Bc embryos are exencephalic. The purposes of these studies were (1) to observe the effects of retinoic acid on the frequency of exencephaly in SELH/Bc embryos; (2) to compare the SELH/Bc response with those of normal strains and of other neural tube mutants; and (3) to compare, between SELH/Bc and a normal strain (SWV/Bc), the effects of retinoic acid on morphology of the closing anterior neural tube. SELH/Bc was more liable to retinoic acid-induced exencephaly than were normal strains. After maternal treatment with 5 mg/kg retinoic acid on day 8.5 of gestation, 53% of SELH/Bc embryos had exencephaly, compared with 22% in ICR/Bc and 14% in SWV/Bc. When these results were transformed according to the assumptions of the developmental threshold model, the effects of genotype and retinoic acid appeared to be additive. Similar treatment on day 9 or 10 of gestation had little or no effect on the frequency of exencephaly in SELH/Bc mice. These results are similar to the reported responses of the curly-tail and Splotch mutants, where frequencies of spina bifida but not exencephaly were decreased. This pattern suggests that studies of effects of periconceptional vitamin treatment on risk of human neural tube defects should consider anencephaly and spina bifida separately. The study comparing the morphology of anterior neural tube closure in SELH/Bc and normal SWV/Bc embryos showed that retinoic acid delays the elevation of the mesencephalic neural folds. This results in a "stalling" of many embryos in the first steps of neural tube closure, with their neural folds remaining convex and splayed wide apart. The delay in fold elevation was superimposed on the different closure patterns of the two strains. The overall conclusion is that there is no nonadditive interaction in the parameters studied between retinoic acid treatment and the SELH/Bc genotype.  相似文献   

9.
Neural tube defects (NTDs), although prevalent and easily diagnosed, are etiologically heterogeneous, rendering mechanistic interpretation problematic. To date, there is evidence that mammalian neural tube closure (NTC) initiates and fuses intermittently at four discrete locations. Disruption of this process at any of these four sites may lead to a region-specific NTDs, possibly arising through closure site-specific genetic mechanisms. Although recent efforts have focused on elucidating the genetic components of NTDs, a void persists regarding gene identification in closure site-specific neural tissue. To this end, experiments were conducted to identify neural tube closure site-specific genes that might confer regional sensitivity to teratogen-induced NTDs. Using an inbred mouse strain (SWV/Fnn) with a high susceptibility to VPA- induced NTDs that specifically targets and disrupts NTC between the prosencephalon and mesencephalon region (future fore/midbrain; neural tube closure site II), we identified a VPA-sensitive closure site II-specific clone. Sequencing of this clone from an SWV neural tube cDNA library confirmed that it encodes the r1 subunit of the cell cycle enzyme ribonucleotide reductase (RNR). The abundance of rnr-r1 mRNA was significantly increased in response to VPA drug treatment. This upregulated expression was accompanied by a significant decrease in cellular proliferation in the closure site II neural tube region of the embryos, as determined by ELISA cellular proliferation assays performed on BrdU-pulsed neuroepithelial cells in vivo. We hypothesize that rnr-r1 plays a critical role in the development of VPA-induced exencephaly.  相似文献   

10.
The possibility of formation of some liposomal neurotropic drugs was studied by 1H-NMR method. Experiments in animals on catalepsy and epidural anaesthesia confirmed this hypothesis.  相似文献   

11.
Benzimidazole carbamates (mebendazole, albendazole and fenbendazole) are the most commonly used anthelmintic drugs for the treatment of larval toxocariasis (Toxocara canis) in paratenic hosts. However, the bioavailability of these drugs for tissues is very low due to their extremely low solubility, resulting in the administration of relatively high doses over a long period. To overcome this problem, neutral, negatively or positively charged and stabilized liposome drug carriers were examined in the chronic phase of T. canis infections in mice each orally inoculated with 1000 eggs. Moreover, liposomized albendazole and fenbendazole were co-administered with liposomized immunomodulator glucan. The highest efficacy of both drugs, evaluated 4 weeks after treatment, was recorded after their subcutaneous administration (ten doses of 25 mg kg(-1)) in stabilized liposomes and intramuscular co-administration of liposomized glucan (two doses of 5 mg kg(-1)). Fenbendazole was more effective in muscles (91.5%) whereas albendazole was more effective in the brain (92.2%). Liposomes with incorporated benzimidazole carbamate anthelmintics provide sustained drug-release reservoirs and can considerably enhance drug efficacy. Moreover, despite suppression by T. canis antigens, stimulation of the immune system by the immunomodulator glucan potentiates the effects of these antiparasitic drugs.  相似文献   

12.
Le Jambre I. F., Southcott W. H. and Dash K. M. 1977. Resistance of selected lines of Ostertagia circumcincta to thiabendazole, morantel tartrate and levamisole. International Journal for Parasitology7: 473–479. A strain of Ostertagia circumcincta was isolated from a field in which all sheep had been treated in sequence every 7–10 days from September 1970 to January 1974 with either thiabendazole, morantel tartrate or levamisole. Thiabendazole had not been used after the first 15 months. The LD95 for this strain was 88 mg/kg thiabendazole, 6.9 mg/kg morantel tartrate and 5-4 mg/kg levamisole.Another strain of O. circumcincta isolated from an area where anthelmintics had been used much less frequently was divided into four lines for exposure to selection in the laboratory. The first line was selected with 50 mg/kg thiabendazole, the second with 5 mg/kg morantel tartrate, and the third with 3.2 mg/kg levamisole; the fourth line was not selected for drug resistance. After eight generations the three lines selected with thiabendazole, morantel tartrate and levamisole had (Spld)(in95) of > 200, 5.7 and 6.2 mg/kg for the selecting drugs respectively, compared with corresponding values of 20, 2.9, and 1.8 in the unselected line. That is, the field strain had about the same levels of resistance to morantel tartrate and levamisole as the respective laboratory strains selected with these individual drugs. However, the field strain, which had been exposed to thiabendazole for only 15 months, was less resistant to thiabendazole than the laboratory strain selected with this drug. These results show that giving of several drugs in sequence cannot be relied upon to prevent the development of resistance to the individual drugs.The dose responses of adult worms showed low, but significant resistances to morantel tartrate and levamisole and a relatively high resistance to thiabendazole. Levamisole was found to select for inhibition of development with approx. 8.0% of the inhibited larvae showing no dose response above 1.6 mg/kg. Levamisole was also associated with an increase from 0.1 % to 9.0% in the O. trifurcata component of an Ostertagia population.  相似文献   

13.

Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  相似文献   

14.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
解析大脑神经网络的连接图谱是认识大脑功能的前提。发展追踪大脑神经环路结构的技术,已成为神经科学研究中的迫切需求。基于嗜神经病毒发展而来的跨突触追踪技术,是揭示大脑神经网络结构的最有效手段,也是神经科学研究中发展十分迅速的领域。不同的嗜神经病毒类型或毒株,都有其独特的分子生物学特性、跨突触标记特性、改造方式。通过使用遗传重组改造的嗜神经病毒追踪神经环路,可以获得特定区域或特定类型神经元多级输出网络、输入网络及单级输入或输出网络。主要介绍神经科学研究中常用的神经病毒及相关的辅助工具病毒特性,及嗜神经病毒介导的各种神经回路标记技术。  相似文献   

17.
18.
In Xenopus, Dishevelled (Xdsh) signaling is required for both neural tube closure and neural convergent extension, but the connection between these two morphogenetic processes remains unclear. Indeed normal neurulation requires several different cell polarity decisions, any of which may require Xdsh signaling. In this paper we address two issues: (1) which aspects of normal neurulation require Xdsh function; and (2) what role convergent extension plays in the closure of the neural tube. We show that Xdsh signaling is not required for neural fold elevation, medial movement or fusion. Disruption of Xdsh signaling therefore provides a specific tool for uncoupling convergent extension from other processes of neurulation. Using disruption of Xdsh signaling, we demonstrate that convergent extension is crucial to tube closure. Targeted injection revealed that Xdsh function was required specifically in the midline for normal neural tube closure. We suggest that the inherent movement of the neural folds can accomplish only a finite amount of medial progress and that convergent extension of the midline is necessary to reduce the distance between the nascent neural folds, allowing them to meet and fuse. Similar results with Xenopus strabismus implicate the planar cell polarity (PCP) signaling cascade in neural convergent extension and tube closure. Together, these data demonstrate that PCP-mediated convergent extension movements are crucial to proper vertebrate neurulation.  相似文献   

19.
Pillai A 《Neuro-Signals》2008,16(2-3):183-193
The role of neurotropins, predominantly brain-derived neurotropic factor (BDNF), has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Both human and rodent studies indicate that the beneficial effects of antipsychotic drugs are mediated, at least in part, through BDNF and its receptor, TrkB. This review will discuss the available data on the levels of BDNF and TrkB in subjects with schizophrenia and in animals with and without conventional antipsychotics. The data concerning the impact of the antipsychotic drugs on BDNF/TrkB signaling will also be discussed. More importantly, this review will provide future perspective on BDNF/TrkB signaling as a novel molecular target to correct the pathogenesis and improve the long-term clinical outcome by treatments with conventional and adjunctive drugs.  相似文献   

20.
目的 探讨高温致神经管畸形(NTDs)作用的分子机制,为防治NTDs的发生提供理论依据.方法 在高温致金黄地鼠NTDs模型的基础上,应用免疫荧光染色技术,观察NTDs发生过程中p-ERK1/2在鼠胚神经上皮细胞中的表达变化.结果 对照组和实验组孕鼠在高温水浴处理后16、24h,p-ERK1/2免疫阳性产物分布于鼠胚神经上皮细胞和周围间充质细胞的胞浆中;水浴后36、60h,p-ERK1/2表达部位出现了由细胞浆向细胞核的转移;高温处理后,p-ERK1/2在实验组各期胚胎神经上皮细胞内的表达均比对照组减弱.结论 ERK1/2参与胚胎神经管的发育过程,其表达降低在高温致神经管畸形的发生中起重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号