首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
Z M Zheng  P He    C C Baker 《Journal of virology》1996,70(7):4691-4699
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. However, one 3' splice site, located at nucleotide (nt) 3225, is used for the processing of most BPV-1 pre-mRNAs in BPV-1-transformed C127 cells and at early to intermediate times in productively infected warts. At late stages of the viral life cycle, an alternative 3' splice site at nt 3605 is used for the processing of the late pre-mRNA. In this study, we used in vitro splicing in HeLa cell nuclear extracts to identify cis elements which regulate BPV-1 3' splice site selection. Two purine-rich exonic splicing enhancers were identified downstream of nt 3225. These sequences, designated SE1 (nt 3256 to 3305) and SE2 (nt 3477 to 3526), were shown to strongly stimulate the splicing of a chimeric Drosophila doublesex pre-mRNA, which contains a weak 3' splice site. A BPV-1 late pre-mRNA containing the nt 3225 3' splice site but lacking both SE1 and SE2 was spliced poorly, indicating that this 3' splice site is inherently weak. Analysis of the 3' splice site suggested that this feature is due to both a nonconsensus branch point sequence and a suboptimal polypyrimidine tract. Addition of SE1 to the late pre-mRNA dramatically stimulated splicing, indicating that SE1 also functions as an exonic splicing enhancer in its normal context. However, a late pre-mRNA containing both SE1 and SE2 as well as the sequence in between was spliced inefficiently. Further mapping studies demonstrated that a 48-nt pyrimidine-rich region immediately downstream of SE1 was responsible for this suppression of splicing. Thus, these data suggest that selection of the BPV-1 nt 3225 3' splice site is regulated by both positive and negative exonic sequences.  相似文献   

4.
Transcriptional organization of bovine papillomavirus type 1   总被引:26,自引:17,他引:9  
  相似文献   

5.
6.
A novel spontaneous mutation of the bovine papillomavirus-1 genome   总被引:4,自引:0,他引:4  
  相似文献   

7.
The papillomavirus life cycle is tightly linked with keratinocyte differentiation in squamous epithelia. Vegetative viral DNA replication begins in the spinous layer, while synthesis of capsid proteins and virus maturation is restricted to the most differentiated or granular layer of the epithelium. In this study, in situ hybridization of bovine fibropapillomas was used to demonstrate that the activity of two promoters of bovine papillomavirus type 1 (BPV-1) is regulated in a differentiation-specific manner. In situ hybridization with a late promoter (PL)-specific oligonucleotide probe suggested that PL is dramatically upregulated in the granular layer of the fibropapilloma. Northern (RNA) blot analysis of RNA from BPV-1-infected fibropapillomas indicated that the three major BPV-1 late-region mRNAs were transcribed from PL. These RNAs include the previously described L1 (major capsid) mRNA as well as two larger mRNAs. The two larger mRNAs were characterized and shown to contain the L2 (minor capsid protein) open reading frame as well as the L1 open reading frame. In contrast to PL, the P2443 promoter was maximally active in basal keratinocytes and the fibroma. The major mRNA transcribed from P2443 is the putative E5 oncoprotein mRNA which is spliced between nucleotides 2505 and 3225. No signal was detected above the basal layer with use of a probe specific for this mRNA. The E5 oncoprotein has previously been localized by immunoperoxidase staining to the granular cell layer as well as the basal cell layer of the fibropapilloma (S. Burnett, N. Jareborg, and D. DiMaio, Proc. Natl. Acad. Sci. USA 89:5665-5669, 1992). These data suggest that E5 proteins in the basal cell and granular cell layers are not translated from the same mRNA.  相似文献   

8.
9.
10.
11.
We have previously observed that bovine papillomavirus type 1 (BPV-1) induces the appearance of five cellular proteins in C127 mouse fibroblasts, four of which appear to arise by altered processing of resident endoplasmic reticulum proteins. Studies of various cell lines revealed that expression of the 3' end of the BPV early region was sufficient for induction of these changes. To identify the BPV gene responsible, we have utilized the simian virus 40 (SV40)/BPV-1 recombinant virus Pava-1, which expresses the 3' end of the BPV early region behind an SV40 early promoter. C127 cells infected with Pava-1 for 48 h show the expected BPV-associated alterations, as do cells infected with Pava constructs mutated in the E5 or E2 genes. However, a mutation in the start codon of a previously ignored open reading frame extending from nucleotides 4013 to 4170 (E5B) eliminated the BPV-associated changes. Similar results were obtained with COS cells infected with the Pava mutants and C127 cells transformed by full-length mutated BPV. Despite its influence on the processing of cellular endoplasmic reticulum proteins, this mutation in E5B did not alter BPV-transforming efficiency or the ability of transformants to form colonies in soft agar. The E5B open reading frame encodes a hydrophobic 52-amino-acid polypeptide that shares structural similarities with HPV6 E5A and HPV16 E5. Speculations on a role for E5B in the viral life cycle are discussed.  相似文献   

12.
13.
14.
The bovine papillomavirus type 1 (BPV-1) genome replicates as a plasmid within the nuclei of BPV-1-transformed murine C127 cells at a constant multiple copy number, and spontaneous amplification of the viral DNA is rarely observed. We report here that a mutant BPV-1 plasmid within a contact-inhibited C127 cell line replicated as a stable multicopy plasmid in exponentially growing cells but amplified to a high level in confluent cell culture. In situ hybridization analysis revealed that most of the mutant viral DNA amplification occurred in a minor subpopulation of cells within the culture. These consisted of giant nondividing cells with greatly enlarged nuclei, a cell form which was specifically induced in stationary-phase cultures. These observations indicated that expression of a viral DNA replication factor was cell growth stage specific. Consistent with this hypothesis, considerable amplification of wild-type BPV-1 DNA associated with characteristic giant cell formation was observed in typical wild-type virus-transformed C127 cultures following a period of growth arrest achieved by serum deprivation. Further observations indicated that induction of the giant-cell phenotype was dependent on BPV-1 gene expression and implicated a viral E1 replication factor in this process. Moreover, heterogeneity in virus genome copy numbers within the giant-cell population suggested a complex regulation of induction of DNA synthesis in these cells. It appears that this process represents a mechanism employed by the virus to ensure maximal viral DNA synthesis within a growth-arrested cell. Fundamental questions concerning the integration of the virus-cell control circuitry in proliferating and resting cells are discussed.  相似文献   

15.
16.
The mRNAs present in bovine papillomavirus type 1 (BPV-1)-transformed C127 cells were studied by primer extension. The results show that two internal promoters are present in the E region of BPV-1 in addition to the previously identified promoter at coordinate 1 (H. Ahola, A. Stenlund, J. Moreno-López, and U. Pettersson, Nucleic Acids Res. 11:2639-2650, 1983). One, located at coordinate 31, generated a set of mRNAs with heterogeneous 5' ends, which may encode the major transforming protein of BPV-1, the E5 protein. The second promoter, which is located at coordinate 39, generates colinear mRNAs which encode either the E4 protein or a truncated form of the E2 protein. Unlike the cottontail rabbit papillomavirus (O. Danos, E. Georges, G. Orth, and M. Yaniv, J. Virol. 53:735-741, 1985), BPV-1 appears to lack a separate promoter for expression of the E7 protein. The major splice sites in the transforming region (E region) of the BPV-1 genome were also identified by nucleotide sequence analysis.  相似文献   

17.
18.
19.
A papillomavirus was isolated from the epithelial layer of a cutaneous fibropapilloma on a Swedish reindeer (Rangifer tarandus). Reindeer papillomavirus (RPV) is morphologically indistinguishable from other papillomaviruses, but the restriction enzyme cleavage pattern of its genome is different. No sequence homology was detected between RPV DNA and the DNAs of bovine papillomavirus type 1 (BPV-1) and avian papillomavirus when hybridization was performed under stringent conditions. However, the RPV genome hybridized to the genome of the European elk papillomavirus and the deer papillomavirus under stringent conditions. A physical map of the RPV genome was constructed, and selected regions of the genome, covering the open translational reading frame (ORF) E5 and part of the E1 and L1 ORFs, were studied by nucleotide sequence analysis. The results made it possible to align the RPV genome with the genome of BPV-1. The E5 ORF of RPV has the potential to encode a 44-amino-acid, exceptionally hydrophobic polypeptide which is very similar to the E5 polypeptides of BPV-1 and deer and European elk papillomaviruses. RPV is oncogenic for hamsters and transforms C127 mouse cells in vitro. Several virus-specific mRNAs were detected in RPV-transformed C127 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号