首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
3.
4.
5.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

6.
7.
We investigated the replicating form of a bovine papillomavirus type 1 (BPV-1) deletion mutant by direct electron-microscopic analysis of low molecular weight cellular DNA fractions. The detection of viral plasmid DNA replication intermediates was facilitated by the isolation of a spontaneously transformed mouse cell subclone containing an unusually high viral genome copy number (approx. 1000 per cell), and by employing a slight modification of the Hirt fractionation procedure to reduce the level of contaminating linear chromosomal DNA fragments. We observed exclusively rolling-circle-type viral DNA replication intermediates, at a frequency of detection of approximately one replication intermediate per 200 monomeric circular viral DNA molecules. The demonstration of rolling-circles with longer-than-genome-length tails indicated that this high-copy viral plasmid was not subject to a strict once-per-cell-cycle mode of DNA replication. Our observations provide further evidence in favour of an alternative replication mode of the BPV-1 genome, and may help to explain earlier conflicting findings concerning the mechanism of stable BPV-1 plasmid copy-number-control.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.  相似文献   

18.
19.
The bovine papillomavirus type 1 (BPV-1) genome replicates as a plasmid within the nuclei of BPV-1-transformed murine C127 cells at a constant multiple copy number, and spontaneous amplification of the viral DNA is rarely observed. We report here that a mutant BPV-1 plasmid within a contact-inhibited C127 cell line replicated as a stable multicopy plasmid in exponentially growing cells but amplified to a high level in confluent cell culture. In situ hybridization analysis revealed that most of the mutant viral DNA amplification occurred in a minor subpopulation of cells within the culture. These consisted of giant nondividing cells with greatly enlarged nuclei, a cell form which was specifically induced in stationary-phase cultures. These observations indicated that expression of a viral DNA replication factor was cell growth stage specific. Consistent with this hypothesis, considerable amplification of wild-type BPV-1 DNA associated with characteristic giant cell formation was observed in typical wild-type virus-transformed C127 cultures following a period of growth arrest achieved by serum deprivation. Further observations indicated that induction of the giant-cell phenotype was dependent on BPV-1 gene expression and implicated a viral E1 replication factor in this process. Moreover, heterogeneity in virus genome copy numbers within the giant-cell population suggested a complex regulation of induction of DNA synthesis in these cells. It appears that this process represents a mechanism employed by the virus to ensure maximal viral DNA synthesis within a growth-arrested cell. Fundamental questions concerning the integration of the virus-cell control circuitry in proliferating and resting cells are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号