首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epidermal growth factor (EGF) binds with high affinity to the EGF receptor, also known as ErbB-1, but upon replacement of the N-terminal linear region by neuregulin (NRG) 1 or transforming growth factor (TGF) alpha sequences it gains in addition high affinity for ErbB-2/ErbB-3 heterodimers. However, these chimeras weakly bind to ErbB-3 alone. To further dissect the ligand binding selectivity of the ErbB network, we have applied the phage display technique to examine the role of the linear N-terminal region in EGF for interaction with ErbB-2/ErbB-3 heterodimers. A library of EGF variants was constructed in which residues 2, 3, and 4 were randomly mutated, followed by selection for binding to intact MDA-MB-453 cells that overexpress ErbB-2 and ErbB-3 but lack ErbB-1. Analysis of the selected phage EGF variants revealed clones with high binding affinity to ErbB-2/ErbB-3 while maintaining high affinity to ErbB-1. In these variants, Trp (or alternatively His) was almost exclusively present at position 2, while specific combinations of hydrophobic, basic, and small residues were found at positions 3 and 4. The mitogenic activity of the phage EGF variants corresponded with their relative binding affinity. Two of the selected EGF variants, EGF/WVS and EGF/WRS, were further characterized as recombinant proteins. In contrast to previously characterized chimeras of EGF with NRG-1 or TGF-alpha, these variants did not only show high binding affinity for ErbB-2/ErbB-3 heterodimers but also for ErbB-3 alone. These data show that the linear N-terminal region of EGF-like growth factors is directly involved in binding to ErbB-3.  相似文献   

2.
H Waterman  I Alroy  S Strano  R Seger    Y Yarden 《The EMBO journal》1999,18(12):3348-3358
Signaling by the epidermal growth factor (EGF) family and the neuregulin group of ligands is mediated by four ErbB receptor tyrosine kinases, that form homo- and heterodimeric complexes. Paradoxically, the neuregulin receptor ErbB-3 is devoid of catalytic activity, but its heterodimerization with other ErbBs, particularly the ligand-less ErbB-2 oncoprotein of carcinomas, reconstitutes superior mitogenic and transforming activities. To understand the underlying mechanism we constructed a chimeric EGF-receptor (ErbB-1) whose autophosphorylation C-terminal domain was replaced by the corresponding portion of ErbB-3. Consistent with the possibility that this domain recruits a relatively potent signaling pathway(s), the mitogenic signals generated by the recombinant fusion protein were superior to those generated by ErbB-1 homodimers and comparable to the proliferative activity of ErbB-2/ErbB-3 heterodimers. Upon ligand binding, the chimeric receptor recruited an ErbB-3-specific repertoire of signaling proteins, including Shc and the phosphatidylinositol 3-kinase, but excluding the ErbB-1-specific substrate, phospholipase Cgamma1. Unlike ErbB-1, which is destined to lysosomal degradation through a mechanism that includes recruitment of c-Cbl and receptor poly-ubiquitination, the C-terminal tail of ErbB-3 shunted the chimeric protein to the ErbB-3-characteristic recycling pathway. These observations attribute the mitogenic superiority of ErbB-3 to its C-terminal tail and imply that the flanking kinase domain has lost catalytic activity in order to restrain the relatively potent signaling capability of the C-terminus.  相似文献   

3.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   

4.
The deaf and the dumb: the biology of ErbB-2 and ErbB-3   总被引:22,自引:0,他引:22  
ErbB-2 (also called HER2/neu) and ErbB-3 are closely related to the epidermal growth factor receptor (EGFR/ErbB-1), but unlike EGFR, ErbB-2 is a ligandless receptor, whereas ErbB-3 lacks tyrosine kinase activity. Hence, both ErbB-2 and ErbB-3 are active only in the context of ErbB heterodimers, and ErbB-2. ErbB-3 heterodimers, which are driven by neuregulin ligands, are the most prevalent and potent complexes. These stringently controlled heterodimers are repeatedly employed throughout embryonic development and dictate the establishment of several cell lineages through mesenchyme-epithelial inductive processes and the interactions of neurons with muscle, glia, and Schwann cells. Likewise, the potent combination of signaling pathways engaged by the heterodimers drives an aggressive phenotype of tumors of secretory epithelia, including breast and lung cancers. This review highlights recent structural insights into the mechanism of ligand-induced heterodimer formation, and concentrates on signaling pathways employed by ErbB-2 and ErbB-3 in normal and in malignant cells.  相似文献   

5.
We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.  相似文献   

6.
ErbB-2/HER2 is an oncogenic tyrosine kinase that regulates a signalling network by forming ligand-induced heterodimers with several growth factor receptors of the ErbB family. Hsp90 and co-chaperones regulate degradation of ErbB-2 but not other ErbB members. Here, we report that the role of Hsp90 in modulating the ErbB network extends beyond regulation of protein stability. The capacity of ErbB-2 to recruit ligand-bound receptors into active heterodimers is limited by Hsp90, which is dissociated from ErbB-2 following ligand-induced heterodimerization. We show that Hsp90 binds a specific loop within the kinase domain of ErbB-2, thereby restraining heterodimer formation and catalytic function. These results define a role for Hsp90 as a molecular switch regulating the ErbB signalling network by limiting formation of ErbB-2-centred receptor complexes.  相似文献   

7.
The family of epidermal growth factor (EGF)-like ligands binds to ErbB receptors in a highly selective manner. Previous studies indicated that both linear regions of the ligand play a major role in determining receptor selectivity, and phage display studies showed that each region could be optimized independently for enhanced affinity. In this study, we broadened the ErbB binding specificity of EGF by introducing the optimal sequence requirements for ErbB3 binding in both the N- and C-terminal linear regions. One such EGF mutant, designated WVR/EGF/IADIQ, gained high affinity for ErbB3 and showed concomitant ErbB3 activation through ErbB2.ErbB3 heterodimers similar to the natural ErbB3 ligand NRG1beta, while the capacity to bind and activate ErbB1 was fully maintained. Despite its high affinity for ErbB1 and ErbB3, this mutant was unable to activate ErbB1.ErbB3 heterodimers, as shown by the cell survival and receptor phosphorylation analysis. We concluded that despite the fact that no naturally occurring ligand exists with this dual-specificity, high-affinity binding to both ErbB1 and ErbB3 is not mutually exclusive. This mutant can be useful in a direct structural comparison of the ligand-binding characteristics of ErbB1 and ErbB3.  相似文献   

8.
The different epidermal growth factor (EGF)-related peptides elicit a diverse array of biological responses as the result of their ability to activate distinct subsets of ErbB receptor dimers, leading to the recruitment of different intracellular signaling networks. To specifically examine dimerization-dependent modulation of receptor signaling, we constructed NIH 3T3 cell lines expressing ErbB-1 and ErbB-2 singly and in pairwise combinations with each other ErbB family member. This model system allowed the comparison of EGF-activated ErbB-1 with ErbB-1 activated by Neu differentiation factor (NDF)-induced heterodimerization with ErbB-4. In both cases, ErbB-1 coupled to the adaptor protein Shc, but only when activated by EGF was it able to interact with Grb2. Compared to the rapid internalization of EGF-activated ErbB-1, NDF-activated ErbB-1 showed delayed internalization characteristics. Furthermore, the p85 subunit of phosphatidylinositol kinase (PI3-K) associated with EGF-activated ErbB-1 in a biphasic manner, whereas association with ErbB-1 transactivated by ErbB-4 was monophasic. The signaling properties of ErbB-2 following heterodimerization with the other ErbB receptors or homodimerization induced by point mutation or monoclonal antibody treatment were also analyzed. ErbB-2 binding to peptides containing the Src homology 2 domain of Grb2 or p85 and the phosphotyrosine binding domain of Shc varied according to the mode of receptor activation. Finally, tryptic phosphopeptide mapping of both ErbB-1 and ErbB-2 revealed that receptor phosphorylation is dependent on the dimerization partner. Differential receptor phosphorylation may, therefore, be the basis for the differences in the signaling properties observed.  相似文献   

9.
Bivalence of EGF-like ligands drives the ErbB signaling network.   总被引:12,自引:3,他引:9  
Signaling by epidermal growth factor (EGF)-like ligands is mediated by an interactive network of four ErbB receptor tyrosine kinases, whose mechanism of ligand-induced dimerization is unknown. We contrasted two existing models: a conformation-driven activation of a receptor-intrinsic dimerization site and a ligand bivalence model. Analysis of a Neu differentiation factor (NDF)-induced heterodimer between ErbB-3 and ErbB-2 favors a bivalence model; the ligand simultaneously binds both ErbB-3 and ErbB-2, but, due to low-affinity of the second binding event, ligand bivalence drives dimerization only when the receptors are membrane anchored. Results obtained with a chimera and isoforms of NDF/neuregulin predict that each terminus of the ligand molecule contains a distinct binding site. The C-terminal low-affinity site has broad specificity, but it prefers interaction with ErbB-2, an oncogenic protein acting as a promiscuous low-affinity subunit of the three primary receptors. Thus, ligand bivalence enables signal diversification through selective recruitment of homo- and heterodimers of ErbB receptors, and it may explain oncogenicity of erbB-2/HER2.  相似文献   

10.
Both homo- and hetero-dimers of ErbB receptor tyrosine kinases mediate signaling by a large group of epidermal growth factor (EGF)-like ligands. However, some ligands are more potent than others, although they bind to the same direct receptor. In addition, signaling by receptor heterodimers is superior to homodimers. We addressed the mechanism underlying these two features of signal tuning by using three ligands: EGF; transforming growth factor alpha (TGFalpha); and their chimera, denoted E4T, which act on cells singly expressing ErbB-1 as a weak, a strong, and a very strong agonist, respectively. Co-expression of ErbB-2, a developmentally important co-receptor whose expression is frequently elevated in human cancers, specifically potentiated EGF signaling to the level achieved by TGFalpha, an effect that was partially mimicked by ErbB-3. Analysis of the mechanism underlying this trans-potentiation implied that EGF-driven homodimers of ErbB-1 are destined for intracellular degradation, whereas the corresponding heterodimers with ErbB-2 or with ErbB-3, dissociate in the early endosome. As a consequence, in the presence of either co-receptor, ErbB-1 is recycled to the cell surface and its signaling is enhanced. This latter route is followed by TGFalpha-driven homodimers of ErbB-1, and also by E4T-bound receptors, whose signaling is further enhanced by repeated cycles of binding and dissociation from the receptors. We conclude that alternative endocytic routes of homo- and hetero-dimeric receptor complexes may contribute to tuning and diversification of signal transduction. In addition, the ability of ErbB-2 to shunt ligand-activated receptors to recycling may explain, in part, its oncogenic potential.  相似文献   

11.
The four members of the ErbB family of receptor tyrosine kinases are involved in a complex array of combinatorial interactions involving homo- and heterodimers. Since most cell types express more than one member of the ErbB family, it is difficult to distinguish the biological activities of different homo- and heterodimers. Here we describe a method for inducing homo- or heterodimerization of ErbB receptors by using synthetic ligands without interference from the endogenous receptors. ErbB receptor chimeras containing synthetic ligand binding domains (FK506-binding protein [FKBP] or FKBP-rapamycin-binding domain [FRB]) were homodimerized with the bivalent FKBP ligand AP1510 and heterodimerized with the bifunctional FKBP-FRB ligand rapamycin. AP1510 treatment induced tyrosine phosphorylation of ErbB1 and ErbB2 homodimers and recruitment of Src homology 2 domain-containing proteins (Shc and Grb2). In addition, ErbB1 and ErbB2 homodimers activated downstream signaling pathways leading to Erk2 and Akt phosphorylation. However, only ErbB1 homodimers were internalized upon AP1510 stimulation, and only ErbB1 homodimers were able to associate with and induce phosphorylation of c-Cbl. Cells expressing AP1510-induced ErbB1 homodimers were able to associate with and induce phosphorylation of c-Cbl. Cells expressing AP1510-induced ErbB1 homodimers were able to form foci; however, cells expressing ErbB2 homodimers displayed a five- to sevenfold higher focus-forming ability. Using rapamycin-inducible heterodimerization we show that c-Cbl is unable to associate with ErbB1 in a ErbB1-ErbB2 heterodimer most likely because ErbB2 is unable to phosphorylate the c-Cbl binding site on ErbB1. Thus, we demonstrate that ErbB1 and ErbB2 homodimers differ in their abilities to transform fibroblasts and provide evidence for differential signaling by ErbB homodimers and heterodimers. These observations also validate the use of synthetic ligands to study the signaling and biological specificity of selected ErbB dimers in any cell type.  相似文献   

12.
Overexpression of the erbB-2 gene contributes to aggressive behavior of various human adenocarcinomas, including breast cancer, through an unknown molecular mechanism. The erbB-2-encoded protein is a member of the ErbB family of growth factor receptors, but no direct ligand of ErbB-2 has been reported. We show that in various cells ErbB-2 can form heterodimers with both EGF receptor (ErbB-1) and NDF receptors (ErbB-3 and ErbB-4), suggesting that it may affect the action of heterologous ligands without the involvement of a direct ErbB-2 ligand. This possibility was addressed in breast cancer cells through either overexpression of ErbB-2 or by blocking its delivery to the cell surface by means of an endoplasmic reticulum-trapped antibody. We report that ErbB-2 overexpression enhanced binding affinities to both EGF and NDF, through deceleration of ligand dissociation rates. Likewise, removal of ErbB-2 from the cell surface almost completely abolished ligand binding by accelerating dissociation of both growth factors. The kinetic effects resulted in enhancement and prolongation of the stimulation of two major cytoplasmic signaling pathways, namely: MAP kinase (ERK) and c-Jun kinase (SAPK), by either ligand. Our results imply that ErbB-2 is a pan-ErbB subunit of the high affinity heterodimeric receptors for NDF and EGF. Therefore, the oncogenic action of ErbB-2 in human cancers may be due to its ability to potentiate in trans growth factor signaling.  相似文献   

13.
The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3.  相似文献   

14.
Four ErbB receptors and multiple growth factors sharing an epidermal growth factor (EGF) motif underlie transmembrane signaling by the ErbB family in development and cancer. Unlike other ErbB proteins, ErbB-2 binds no known EGF-like ligand. To address the existence of a direct ligand for ErbB-2, we applied algorithms based on genomic and cDNA structures to search sequence data bases. These searches reidentified all known EGF-like growth factors including Epigen (EPG), the least characterized ligand, but failed to identify novel factors. The precursor of EPG is a widely expressed transmembrane glycoprotein that undergoes cleavage at two sites to release a soluble EGF-like domain. A recombinant EPG cannot stimulate cells singly expressing ErbB-2, but it acts as a mitogen for cells expressing ErbB-1 and co-expressing ErbB-2 in combination with the other ErbBs. Interestingly, soluble EPG is more mitogenic than EGF, although its binding affinity is 100-fold lower. Our results attribute the anomalous mitogenic power of EPG to evasion of receptor-mediated depletion of ligand molecules, as well as to inefficient receptor ubiquitylation and down-regulation. In conclusion, EPG might represent the last EGF-like growth factor and define a category of low affinity ligands, whose bioactivity differs from the more extensively studied high affinity ligands.  相似文献   

15.
Epiregulin (EPR), a novel member of epidermal growth factor (EGF) family, is a ligand for ErbB-1 and ErbB-4 receptors. The binding affinity of EPR for the receptors is lower than those of other EGF-family ligands. The solution structure of EPR was determined using two-dimensional nuclear magnetic resonance spectroscopy. The secondary structure in the C-terminal domain of EPR is different from other EGF-family ligands because of the lack of hydrogen bonds. The structural difference in the C-terminal domain may provide an explanation for the reduced binding affinity of EPR to the ErbB receptors.  相似文献   

16.
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.  相似文献   

17.
Protein assembly is a critical process involved in a wide range of cellular events and occurs through extracellular and/or transmembrane domains (TMs). Previous studies demonstrated that a GXXXG motif is crucial for homodimer formation. Here we selected the TMs of ErbB1 and ErbB2 as a model since these receptors function both as homodimers and as heterodimers. Both TMs contain two GXXXG-like motifs located at the C and N termini. The C-terminal motifs were implicated previously in homodimer formation, but the role of the N-terminal motifs was not clear. We used the ToxR system and expressed the TMs of both ErbB1 and ErbB2 containing only the N-terminal GXXXG motifs. The data revealed that the ErbB2 but not the ErbB1 construct formed homodimers. Importantly, a synthetic ErbB1 TM peptide was able to form a heterodimer with ErbB2, by displacing the ErbB2 TM homodimer. The specificity of the interaction was demonstrated by using three controls: (i) Two single mutations within the GXXXG-like motif of the ErbB1 peptide reduced or preserved its activity, in agreement with similar mutations in glycophorin A. (ii) A TM peptide of the bacterial Tar receptor did not assemble with the ErbB2 construct. (iii) The ErbB1 peptide had no effect on the dimerization of a construct containing the TM-1 domain of the Tar receptor. Fluorescence microscopy demonstrated that all the peptides localized on the membrane. Furthermore, incubation with the peptides had no effect on bacterial growth and protein expression levels. Our results suggest that the N-terminal GXXXG-like motif of the ErbB1 TM plays a role in heterodimerization with the ErbB2 transmembrane domain. To our knowledge, this is the first demonstration of a transmembrane domain with two distinct recognition motifs, one for homodimerization and the other for heterodimerization.  相似文献   

18.
Virulence of poxviruses, the causative agents of smallpox, depends on virus-encoded growth factors related to the mammalian epidermal growth factor (EGF). Here we report that the growth factors of Shope fibroma virus, Myxoma virus and vaccinia virus (SFGF, MGF and VGF) display unique patterns of specificity to ErbB receptor tyrosine kinases; whereas SFGF is a broad-specificity ligand, VGF binds primarily to ErbB-1 homodimers, and the exclusive receptor for MGF is a heterodimer comprised of ErbB-2 and ErbB-3. In spite of 10- to 1000-fold lower binding affinity to their respective receptors, the viral ligands are mitogenically equivalent or even more potent than their mammalian counterparts. This remarkable enhancement of cell growth is due to attenuation of receptor degradation and ubiquitination, which leads to sustained signal transduction. Our results imply that signal potentiation and precise targeting to specific receptor combinations contribute to cell transformation at sites of poxvirus infection, and they underscore the importance of the often ignored low-affinity ligand-receptor interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号