首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

2.
谢广成  段招军 《病毒学报》2012,28(3):303-310
入侵病毒的探知和适应性免疫应答启动均依靠固有免疫系统。三种模式识别受体(PRRs)在宿主防御系统第一线占据极其重要地位:Toll样受体、维甲酸诱导基因I样受体、核苷酸结合寡聚化结构域样受体。PRRs识别病原相关分子模式(PAMP)或危险信号分子模式(DAMPs)启动和调节固有免疫和适应性免疫应答。每种PRR都有单独的识别配体和细胞定位。激活的PRRs将信号分子传递给其配体分子(MyD88,TRIF,IRAK,IPS-1),配体活化后作为信使激活信号途径下游激酶(IKK复合物,MAPKs,TBK1,RIP-1)和转录因子(NF-κB,AP-1,IRF3),最终产生细胞因子、趋化因子、促炎细胞因子和I型干扰素。本文重点讨论PRRs信号通路及该领域取得的成果,以期为人类健康和免疫疾病防治提供策略。  相似文献   

3.
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns(PAMPs),which canbe recognized by cells of the innate immune system.This recognition of "nonself" signatures occurs through host pattern recognition receptors(PRRs),suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself.Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades,subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes.Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis.In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation,which may provide new targets for therapeutic intervention to the inflammatory disorders.  相似文献   

4.
Pattern recognition receptors (PRRs) are a family of germline encoded receptors responsible for the detection of “pathogen associated molecular patterns” (PAMPs) or host derived “damage associated molecular patterns” (DAMPs) which induce innate immune signalling to generate a pro-inflammatory profile within the host. Four main classes of PRRs are recognised, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin receptors (CLRs). Abnormal activation of PRRs has been implicated in various autoimmune and inflammatory conditions including rheumatoid arthritis and asthma. Recent growing evidence has implicated these PRRs as contributory elements to the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Here, the current literature which implicates PRRs in IBD and CAC is comprehensively reviewed.  相似文献   

5.
NOD样受体在炎症反应中的调控作用   总被引:2,自引:0,他引:2  
席琼  胡巢凤 《生命科学》2010,(5):454-458
天然免疫(innate immunity)是机体免疫系统直接抵御病原体入侵的最初阶段,通过机体自身的特异性模式识别受体(pattern-recognition receptors,PRRs)来识别病原体特有的保守结构病原相关分子模式(pathogen-associated molecular patterns,PAMPs)。细胞内NOD样受体(NLRs)是胞浆型PRRs中的一个重要家族,病原体侵袭细胞可上调其表达,启动机体的免疫应答和炎症反应,在机体天然免疫应答中发挥独特的功能。最近有研究证明,NLRs的突变与一些人类免疫性疾病相关,并且在细菌感染和炎症反应的控制中起重要作用。该文将讨论NLRs在炎症疾病中的调控作用。  相似文献   

6.
Toll样受体介导的信号转导通路在对抗外来病原体的天然免疫应答中起重要作用。Toll样受体是一个天然模板识别受体家族,能识别固有性模板(微生物和哺乳动物所共有的病原相联的分子模板PAMPs)。Toll样受体通过巨噬细胞和其他免疫细胞来识别,其中TLR4识别内毒素、TLR2识别肽聚糖、TLR9识别细菌DNA、TLR5识别鞭毛蛋白、TLR3识别双链RNA等。本探讨了多种Toll受体家族成员在动物体内识别机理及功能,概述了其应用研究进展。  相似文献   

7.
Pattern recognition receptors (PRRs) of innate immune cells recognize the conserved molecular signatures on pathogens, termed pathogen-associated molecular patterns. PRRs also recognize endogenous damage-associated molecular patterns. Following pathogen infection or tissue damage, the stimulation of PRRs activates distinct but shared signaling pathways that lead to effector mechanisms in innate host defense. PRR signaling is strictly and finely tuned to ensure the appropriate duration and strength to prevent damaging inflammation to the host. Here we attempt to provide a brief background on the agonists and signal transduction pathways of PRRs and summarize the mechanisms underlying the control of PRR signaling, with a particular focus on the recent progress of the involvement of PRR signaling in the inflammatory immune disorders.  相似文献   

8.
Pathogen recognition and innate immunity   总被引:145,自引:0,他引:145  
Akira S  Uematsu S  Takeuchi O 《Cell》2006,124(4):783-801
Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.  相似文献   

9.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Nod1 and Nod2 are members of the rapidly expanding family of NACHT domain-containing proteins involved in intracellular recognition of bacterial products. Nods proteins are involved in the cytosolic detection of peptidoglycan motifs of bacteria, recognized through the LRR domain. The role of the NACHT-LRR system of detection in innate immune responses is highlighted at the mucosal barrier, where most of the membranous Toll like receptors (TLRs) are not expressed, or with pathogens that have devised ways to escape TLR sensing. For a given pathogen, the sum of the pathways induced by the recognition of the different "pathogen associated molecular patterns" (PAMPs) by the different pattern recognition receptors (PRRs) trigger and shape the subsequent innate and adaptive immune responses. Knowledge gathered during the last decade on PRR and their agonists, and recent studies on bacterial infections provide new insights into the immune response and the pathogenesis of human infectious diseases.  相似文献   

10.
Ficolins are serum complement lectins, with a structure similar to mannose-binding lectin (MBL) and lung surfactant protein (SP)-A and SP-D. Ficolins activate the lectin complement system and play important roles in host innate immunity. Ficolins are members of the collectin family of proteins, which act as pattern recognition receptors (PRRs). They are soluble oligomeric defense proteins with lectin-like activity, and are able to recognize pathogen-associated molecular patterns (PAMPs), which are carbohydrate molecules on the surface of pathogens, and of apoptotic, necrotic, and malignant cells. Upon binding to their specific PAMPs, ficolins may trigger activation of the immune system either (1) by initiating activation of complement via the lectin pathway, (2) by a primitive type of opsonophagocytosis, or (3) by stimulating secretion of the inflammatory cytokines interferon (IFN)-Γ, interleukin (IL)-17, IL-6, and tumor necrosis factor (TNF)-α, and production of nitric oxide (NO) by macrophages, thus limiting the infection and concurrently orchestrating the subsequent adaptive immune response. Recently, a number of reports have shown that dysfunction or abnormal expression of ficolins may play crucial roles in viral and bacterial diseases and in inflammation. This review summarizes the reports on the roles of ficolins in the infectious diseases, and provides insight into ficolins as novel innate immune therapeutic options to treat these diseases.  相似文献   

11.
12.
Recognition of Streptococcus pneumoniae by the innate immune system   总被引:1,自引:0,他引:1  
Streptococcus pneumoniae is both a frequent colonizer of the upper respiratory tract and a leading cause of life-threatening infections such as pneumonia, meningitis and sepsis. The innate immune system is critical for the control of colonization and for defence during invasive disease. Initially, pneumococci are recognized by different sensors of the innate immune system called pattern recognition receptors (PRRs), which control most subsequent host defence pathways. These PRRs include the transmembrane Toll-like receptors (TLRs) as well as the cytosolic NOD-like receptors (NLRs) and DNA sensors. Recognition of S. pneumoniae by members of these PRR families regulates the production of inflammatory mediators that orchestrate the following immune response of infected as well as neighbouring non-infected cells, stimulates the recruitment of immune cells such as neutrophils and macrophages, and shapes the adaptive immunity. This review summarizes the current knowledge of the function of different PRRs in S. pneumoniae infection.  相似文献   

13.
The innate immune system offers the first line of defense against invading microbial pathogens through the recognition of conserved pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). The host innate immune system through PRRs, the sensors for PAMPs, induces the production of cytokines. Among different families of PRRs, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and its mitochondrial adaptor ie, the mitochondrial antiviral-signaling (MAVS) protein, are crucial for RLR-triggered interferon (IFN) antiviral immunity. Recent studies have shown that the N-terminal caspase recruitment domain (CARD) and transmembrane domain play a pivotal role in oligomerization of black carp MAVS (BcMAVS), crucial for the host innate immune response against viral invasion. In this study, we have used molecular modeling, docking, and molecular dynamics (MD) simulation approaches to shed molecular insights into the oligomerization mechanism of BcMAVSCARD. MD simulation and interaction analysis portrayed that the type-I surface patches of BcMAVS CARD make the major contribution to the interaction. Moreover, the evidence from surface patches and critical residues involved in the said interaction is found to be similar to that of the human counterpart and requires further investigation for legitimacy. Altogether, our study provided crucial information on oligomerization of BcMAVS CARDs and might be helpful for clarifying the innate immune response against pathogens and downstream signaling in fishes.  相似文献   

14.
固有免疫细胞是机体抵御病原微生物的首道防线,亦是机体有效启动和维持免疫反应的重要参与者,而模式识别受体是固有免疫细胞发挥免疫功能的重要免疫分子,因此,机体对固有免疫细胞及其模式识别受体的精细调控尤为重要。表观遗传学是近年研究热点,其在固有免疫调节中的作用逐渐受到重视。就近年表观遗传学中的DNA甲基化、组蛋白共价修饰及非编码RNA等在调节固有免疫细胞分化发育及其模式识别受体的相关研究作一简述,以期为感染、炎症、自身免疫病等研究与防治提供新的思路和策略。  相似文献   

15.
Antiviral signaling through pattern recognition receptors   总被引:10,自引:0,他引:10  
Viral infection is detected by the host innate immune system. Innate immune cells such as dendritic cells and macrophages detect nucleic acids derived from viruses through pattern recognition receptors (PRRs). Viral recognition by PRRs initiates the activation of signaling pathways that lead to production of type I interferon and inflammatory cytokines, which are important for the elimination of viruses. Two types of PRRs that recognize viral nucleic acids, Toll-like receptors (TLR) and RIG-I-like RNA helicases (RLH), have been identified. Of the TLRs, TLR3 recognizes viral double-stranded (ds) RNA, TLR7 and human TLR8 identify viral single-stranded (ss) RNA and TLR9 detects viral DNA. TLRs are located in endosomal compartments, whereas RLH are present in the cytoplasm where they detect viral dsRNA or ssRNA. Here we review the role of TLRs and RLHs in the antiviral innate immune response.  相似文献   

16.
Early detection of viruses by the innate immune system is critical for host defense. Antiviral immunity is initiated by germline encoded pattern recognition receptors (PRRs) that recognize viral pathogen-associated molecular patterns (PAMPs) such as nucleic acids. Intracellular PRRs then drive the production of interferons and cytokines to orchestrate immune responses. One key host factor that is critical for antiviral immunity and for systemic inflammatory reactions including fever is interleukin-1beta (IL-1β). Here we discuss current insights into the molecular mechanisms how the cytosolic RNA helicase RIG-I triggers NF-κB signaling and inflammasome activation specifically for RNA virus-induced IL-1β production.  相似文献   

17.
炎症小体(inflammasome)是免疫细胞内由多种蛋白质所组成的复合体,属于胞浆型模式识别受体(pattern recognition receptor,PRR)。它作为固有免疫系统的重要组分在机体免疫反应和疾病发生过程中具有重要作用。近年来的研究表明炎症小体是炎症免疫反应的核心。由于能被多种类型的病原体或危险信号所激活,NLRP3(NOD样受体蛋白-3)炎症小体在多种疾病过程中,包括动脉粥样硬化症、家族性周期性自身炎症反应、阿尔海默茨病和2型糖尿病等都发挥了关键作用。因此,NLRP3(NOD样受体蛋白-3)炎症小体可能为各种炎症性疾病,包括动脉粥样硬化的治疗提供新的靶点。本文将对炎症小体在动脉粥样硬化发生发展中发挥的作用进行综述。  相似文献   

18.
Sterile inflammation: sensing and reacting to damage   总被引:2,自引:0,他引:2  
Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.  相似文献   

19.
Pattern recognition receptors (PRRs) have been found on all cells of the body—cells of the innate and adaptive immune systems, epithelial and endothelial cells, keratinocytes, etc. PRRs can recognize specific molecular structures of microorganisms as well as allergens and other substances. The interaction with ligands of foreign microorganisms activates PRRs, after which host cells start to produce cytokines both to specifically activate innate immunity and to control adaptive immune reactions. On the othe hand, no immune response develops against microorganisms of the normal microflora. Practically, the development of all immune responses is controlled by PRRs. These responses start in epithelial cells, skin cells, and vascular epithelial cells, which meet alien first. The immune system uses these cells to control the composition of normal microflora. Accordingly, the definition of immune system functions should be complemented by the regulation of body’s microflora in addition to the protection from alien and altered self.  相似文献   

20.
转染小干扰RNA片段(small interfering RNA, siRNA)被广泛用于沉默基因表达.外源性核酸短链的进入能激活Toll样受体,触发免疫应答,促进机体炎症因子的表达与释放. siRNA还能活化双链RNA依赖性蛋白激酶(dsRNA-dependent protein kinase,PKR)等胞内模式识别受体,通过免疫反应引起机体功能障碍.siRNA的免疫效应与其核苷酸链的长短、碱基序列、核糖结构等密切相关,相应的化学修饰能阻断其激活模式识别受体,抑制固有免疫应答.本文综述了近年来siRNA对固有免疫应答的分子机制,为改善基因沉默效应和拓展该技术的临床应用提供有益帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号