首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Angiogenesis, a complex biologic process, is regulated by a large number of angiogenic factors, including vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Whether Bone morphogenetic proteins-2 (BMP-2), the osteoinductive factor, could significantly reinforce the effect of VEGF and FGF-2 on angiogenesis has not been studied in detail. To study the positive effects of multiple growth factors on angiogenesis, HUVECs were treated with BMP-2, VEGF, or FGF-2 singly and in binary and ternary combinations. This study further investigates the optimal timing of the ternary combination of BMP-2, VEGF and FGF-2 for angiogenesis in the chorioallantoic membrane (FGF-2 CAM). Results of single applications of BMP-2, VEGF, or FGF-2 suggested that HUVECs angiogenesis could be promoted in a dose-dependent manner and that the optimal concentration of BMP, VEGF and FGF-2 was 10, 50 and 1 ng/mL, respectively. These results indicated that the angiogenic activity of VEGF and FGF-2 was amplified by combining with BMP-2. The ternary combination of BMP-2, VEGF and FGF-2 exhibited a positive and synergistic effect on HUVECs angiogenesis, with the lower concentrations of each factor (1 ng/mL of BMP-2, 25 ng/mL of VEGF and 0.1 ng/mL of FGF-2) being sufficient to show synergistic promotion. When VEGF and FGF-2 were added in the initial activation stage and BMP-2 was added in the maturation stage, both HUVECs angiogenesis in vitro and CAM angiogenesis in vivo could be enhanced more effectively. These results could provide a basis for the controlled release systems capable of delivering multiple factors sequentially to promote angiogenesis in tissue engineering.  相似文献   

2.
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.  相似文献   

3.
FGF-2对人骨髓间充质干细胞增殖和向成骨细胞分化的影响   总被引:4,自引:0,他引:4  
探讨体外培养条件下,成纤维细胞生长因子-2(FGF-2)和地塞米松(Dex)对第7代人骨髓间充质干细胞(MSCs)增殖和向成骨细胞分化的作用以及两者联合使用的效应。MSCs经含FGF-2或/和Dex的培养液作用后,于不同时间采用MTT法测定细胞增殖情况;对硝基苯磷酸(pNPP)法测定碱性磷酸酶(ALP)活性;ELISA法测定骨钙蛋白(OC)含量;茜素红S染色法对沉积的钙盐进行染色。发现:(1)FGF-2组细胞的生长速度为对照组的1.31倍,Dex/FGF-2组细胞的生长速度为FGF-2组的1.12倍。(2)Dex组的ALP活性、OC含量和细胞外基质钙盐沉积分别为对照组的17.0倍、2.12倍和10.56倍,并能形成成熟的羟基磷灰石(HA)结晶和骨结节;FGF-2组的ALP活性比对照组降低了76.7%,虽然OC含量、钙盐沉积增加,但不能形成成熟的HA结晶和骨结节;FGF-2对Dex诱导的ALP活性增加和HA结晶形成有拮抗作用。由此证明:(1)FGF-2可促进MSCs的增殖,Dex对MSCs的增殖无明显作用;Dex能增强FGF-2对MSCs的促增殖效应。(2)Dex可使MSCs分化为成熟的成骨细胞,是一个有效的成骨细胞分化诱导剂;FGF-2可使MSCs分化为未成熟的成骨细胞;FGF-2拮抗Dex诱导MSCs分化为成熟的成骨细胞。  相似文献   

4.
5.
6.
To explore the potential of combined delivery of osteogenic and angiogenic factors to bone marrow stromal cells (BMSCs) for repair of critical-size bone defects, we followed the formation of bone and vessels in tissue-engineered constructs in nude mice and rabbit bone defects upon introducing different combinations of BMP-2, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) to BMSCs with adenoviral vectors. Better osteogenesis and angiogenesis were found in co-delivery group of BMP-2, VEGF and angiopoietin-1 than any other combination of these factors in both animal models, indicating combined gene delivery of angiopoietin-1 and VEGF165 into a tissue-engineered construct produces an additive effect on BMP-2-induced osteogenesis.  相似文献   

7.
The aim of this study was to compare different cell sources and culture conditions to obtain endothelial progenitor cells (EPCs) with predictable antigen pattern, proliferation potential and in vitro vasculogenesis. Pig mononuclear cells were isolated from blood (PBMCs) and bone marrow (BMMCs). Mesenchymal stem cells (MSCs) were also derived from pig bone marrow. Cells were cultured on fibronectin in the presence of a high concentration of VEGF and low IGF-1 and FGF-2 levels, or on gelatin with a lower amount of VEGF and higher IGF-1 and FGF-2 concentrations. Endothelial commitment was relieved in almost all PBMCs and BMMCs irrespective of the protocol used, whilst MSCs did not express a reliable pattern of EPC markers under these conditions. BMMCs were more prone to expand on gelatin and showed a better viability than PBMCs. Moreover, about 90% of the BMMCs pre-cultured on gelatin could adhere to a hyaluronan-based scaffold and proliferate on it up to 3 days. Pre-treatment of BMMCs on fibronectin generated well-shaped tubular structures on Matrigel, whilst BMMCs exposed to the gelatin culture condition were less prone to form vessel-like structures. MSCs formed rough tubule-like structures, irrespective of the differentiating condition used. In a relative short time, pig BMMCs could be expanded on gelatin better than PBMCs, in the presence of a low amount of VEGF. BMMCs could better specialize for capillary formation in the presence of fibronectin and an elevated concentration of VEGF, whilst pig MSCs anyway showed a limited capability to differentiate into the endothelial cell lineage.  相似文献   

8.
Some members of the bone morphogenetic protein subfamily (BMP-2 and -7) are currently used in orthopedic surgery for several applications. Although their use is considered safe at short term, the high doses of growth factors needed make these treatments expensive and their safety uncertain at long term. BMP-6 has been much less studied than BMP-2 and -7, but some authors suggest that this BMP might have a stronger osteogenic activity than the previously mentioned. Having in mind that angiogenesis plays a well-known role during bone formation, the aim of this work was to study the effect of combining BMP-6 with bFGF on both the growth and differentiation of MC3T3-E1 mouse preosteoblasts and rat bone marrow-derived mesenchymal stem cells (MSCs), as well as on in vivo osteogenesis. We demonstrate that a low dose of bFGF enhances the osteogenic differentiation of MSCs induced by BMP-6 in vitro. Furthermore, we also demonstrate that bone formation in vivo induced by BMP-6 can be accelerated and enhanced by adding a low dose of bFGF, what might suggest a synergic effect between these growth factors on in vivo osteogenesis.  相似文献   

9.
10.
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.  相似文献   

11.
The aims of this study were to expose the function of calcitonin gene-related peptide (CGRP) in the proliferation and intracellular communication of mesenchymal stem cells (MSCs), to observe the change in IGF-1, BMP-2 and their receptor in the MSCs cell with exogenous CGRP, and to explore whether exogenous CGRP will induce MSCs to express the osteoinduced factor and it’s receptor. MSCs were separated from bone marrow and collected by gradient centrifugation and adherent culture. Real-time polymerase chain reaction (RT-PCR) was used to detect CGRP receptor in MSCs in logarithmic growth phase [1]. Hybridoma technique was used to produce rabbit-anti-human CGRP receptor, which was used in the Western blot test to detect CGRP receptor protein produced in human MSCs. Then, MSCs were parted into 3 groups decided by the concentration of CGRP. Cell proliferation was detected through methylthiazol tetrazolium (MTT) test. Cell form in each group was detected through optical microscope, in the same time point. Cell cycle was detected with flow cytometric to analyze the ratio of cell in the mitotic time. MSCs collected from healthy volunteer were parted into 3 groups: the control group, the anagen group, and the experimental group. Intracellular communication medium molecule was detected through radioimmunoassay; intracellular communication and signal conduction were detected through carboxyfluorescein diacetate fluorescent dye. The expression of Cx43mRNA was detected through real-time PCR. The mRNA expressions of proliferation-related biological factor of MSCs were detected through real-time PCR. MSCs collected by gradient centrifugation and cultured by adherent culture have high purity and proliferation effect. It was proved through RT-PCR that MSCs express CGRP receptor mRNA, and it was also be proved through Western blot that MSCs express CGRP receptor protein. The MTT test showed similar result, the 10–8 mol/L CGRP group had the highest proliferation speed, and the control group had the lowest. There is statistical difference between experimental group and control group. There also had static difference between the 10–8 mol/L CGRP group and the other two experimental group. Expression of Cx43mRNA in experimental group was higher than the other two groups, but, without static difference. It was proved that the mRNA expressions of IGF-1, IGF-1 receptor, and BMP-2 receptor in experimental group were higher than that in control group with static difference. The mRNA expressions of BMP-2 in all the groups had no static difference. And Ct index in all the groups were higher than 35. It was proved that MSCs express CGRP receptor mRNA and protein. With MTT test, it had been proved that exogenous CGRP can accelerate the proliferation speed in the logarithmic growth phase. With flow cytometric, it had been proved that exogenous CGRP can raise the ratio of the cell in the DNA synthesis period and mitosis prophase. CGRP can promote not only intracellular communication of MSCs but also the expression of Cx43mRNA. The exogenous CGRP can increase the mRNA expression of IGF-1, IGF-1 receptor, and BMP-2 receptor of MSCs. In all the groups, the Ct indexes of BMP-2mRNA were higher than 35, which could be considered as negative expression.  相似文献   

12.
Bone morphogenetic proteins (BMPs) are factors that promote osteoblastic cell differentiation and osteogenesis. It is unknown whether BMPs may act on human osteoblastic cells by increasing immature cell growth and/or differentiation. We investigated the short- and long-term effects of recombinant human (rh)BMP-2 on cell growth and osteoblast phenotype in a new model of human neonatal pre-osteoblastic calvaria cells (HNC). In short-term culture, rhBMP-2 (20-100 ng/ml) inhibited DNA synthesis and increased alkaline phosphatase (ALP) activity without affecting osteocalcin (OC) production. When cultured for 3 weeks in the presence of ascorbic acid and inorganic phosphate to induce cell differentiation, HNC cells initially proliferated, type 1 collagen mRNA and protein levels rose, and then decreased, whereas OC mRNA and protein levels, and calcium accumulation into the extracellular matrix increased at 2 to 3 weeks. A transient treatment with rhBMP-2 (50 ng/ml) for 1 to 7 days which affected immature HNC cells, decreased cell growth, increased ALP activity and mRNA, and induced cells to express ALP, osteopontin, and OC at 7 days, as shown by immunocytochemistry. At 2 to 3 weeks, matrix mineralization was markedly increased despite cessation of treatment, and although OC and Col 1 mRNA and protein levels were not changed. A continuous treatment with rhBMP-2 for 3 weeks which affected immature and mature cells reduced cell growth, increased ALP activity and mRNA at 1 week and increased OC mRNA and protein levels and calcium content in the matrix at 3 weeks, indicating complete osteoblast differentiation. These results indicate that the differentiating effects of BMP-2 on human neonatal calvaria are dependent on duration of exposure. Although long-term exposure led to complete differentiation of OC-synthesizing osteoblasts, the primary effect of rhBMP-2 was to promote osteoblast marker expression in immature cells, which was sufficient to induce optimal matrix mineralization independently of cell growth and type 1 collagen expression.  相似文献   

13.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

14.
洛伐他汀促进成骨细胞增殖、BMP-2表达和矿化的实验研究   总被引:1,自引:0,他引:1  
目的研究洛伐他汀对体外培养大鼠颅骨成骨细胞生物学功能的影响,探讨其促进骨形成的作用机制.方法洛伐他汀作用于体外培养大鼠颅骨成骨细胞,化学染色观察对成骨细胞矿化结节形成的影响;用免疫细胞化学单标计数测定成骨细胞增殖率及染色吸光度测定BMP-2的表达的变化;BMP-2和BrdU免疫双标染色吸光度测定新生成骨细胞BMP-2的表达情况.结果实验组成骨细胞矿化结节的数量和面积、细胞增殖率及BMP-2的表达明显高于空白对照组(P<0.05);实验组新生成骨细胞BMP-2的表达显著高于对照组(P<0.01).结论洛伐他汀可促进成骨细胞的增殖、分化、BMP-2的表达和矿化结节的形成,从而发挥促进骨形成的作用.  相似文献   

15.
The Wnt family of secreted glycoproteins plays an integral role in embryonic development and differentiation. To explore the role of Wnt's in one aspect of differentiation, namely osteogenesis, we employed a retroviral gene transfer approach to express Wnt-3a in the multipotent murine embryonic mesenchymal cell line C3H10T1/2. We found that expression of Wnt-3a in these cells had a significant, positive effect on cell growth in serum-containing medium, in that the cells grew to very high densities compared to the control cells. Additionally, apoptosis was markedly inhibited by Wnt-3a. However, when the cells were grown in serum-deficient medium, the Wnt-3a-expressing cells arrested efficiently in G1 phase, indicating that serum growth factors were needed in addition to Wnt-3a for enhanced proliferation. Wnt-3a-expressing cells exhibited high levels of alkaline phosphatase gene expression and enzymatic activity, but did not show any matrix mineralization. Unexpectedly, basal expression of bone sialoprotein, osteocalcin, and osteopontin were markedly inhibited by Wnt-3a, as were other known target genes of Wnt-3a, such as Brachyury, FGF-10, and Cdx1. When Wnt-3a-expressing cells were treated with osteogenic supplements in the presence of BMP-2, alkaline phosphatase gene expression and activity were further elevated. Additionally, BMP-2 was able to reverse the inhibitory effect of Wnt-3a on osteocalcin and osteopontin gene expression. These results indicate that while Wnt-3a represses basal expression of some osteogenic genes, this repression can be partially reversed by BMP-2. Finally, the enhanced gene expression of alkaline phosphatase induced by Wnt-3a could be effectively suppressed by the combined action of dexamethasone and 1,25-dihydroxyvitamin D(3). These data show for the first time that Wnt-3a has an unusual effect on multipotential embryonic cells, in that it enhances cellular proliferation and expression of alkaline phosphatase, while it represses most other marker genes of osteogenic differentiation.  相似文献   

16.
Ghosh JG  Shenoy AK  Clark JI 《Biochemistry》2007,46(21):6308-6317
Protein pin arrays assessed interactions between alphaB crystallin and 12 regulatory proteins, including EGF, FGF-2, IGF-1, NGF-beta, TGF-beta, VEGF, insulin, beta-catenin, caspase-3, caspase-8, Bcl-2, and Bcl-xL, which are important in cellular differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis. FGF-2, NGF-beta, VEGF, insulin, and beta-catenin had strong interactions with human alphaB crystallin peptides, and the alphaB crystallin interactive sequences for these proteins were identified. The seven remaining proteins (EGF, IGF-1, TGF-beta, caspase-3, caspase-8, BCl-2, and Bcl-xL) did not interact with alphaB crystallin. The alphaB crystallin sequences that interacted with FGF-2, NGF-beta, VEGF, insulin, and beta-catenin overlapped with sequences that selectively interact with partially unfolded proteins, suggesting a common function for alphaB crystallin in chaperone activity and the regulation of cell growth and differentiation. Chaperone assays conducted with full-length alphaB crystallin and synthetic alphaB crystallin peptides confirmed the ability of alphaB crystallin to protect against the aggregation of FGF-2 and VEGF, suggesting that alphaB crystallin protects these proteins against unfolding and aggregation under conditions of stress. This is the first report in which sequences involved in interactions with regulatory proteins, including FGF-2, NGF-beta, VEGF, insulin, and beta-catenin, were identified in a small heat shock protein.  相似文献   

17.
The spatial and temporal pattern of the appearance of the fibroblast growth factor proteins (FGF-8 and FGF-10), the bone morphogenetic proteins (BMP-2/4 subfamily and BMP-7) and the vascular endothelial growth factor protein (VEGF) was investigated in the human mesonephros and metanephros of the 5-9 week-old conceptuses. In the mesonephros, both FGF's and BMP's were found in all structures and their expression slightly decreased in the early fetal period. VEGF positivity appeared in all mesonephric structures, and increased in the fetal period coincidently with formation of the mesonephric blood vessel network. In the metanephros, FGF-8 first appeared only in the metanephric mesenchyme, but from the 7th week on, its reactivity increased and spread to other metanephric structures. FGF-10 positive cells appeared in all metanephric structures already in the 5th week, and slightly intensified with progression of development. Cell survival and nephrogenesis in the permanent kidney might be associated with the appearance of both growth factors. Both BMP-2/4 and BMP-7 displayed a similar pattern of reactivity in all metanephric structures, and their reactivity intensified with advancing development. Alterations in their pattern of appearance might lead to the formation of small and dysplastic kidneys. Already in the earliest developmental stages, VEGF protein appeared in all metanephric structures. At later stages, VEGF showed more intense reaction in the collecting system than in the differentiating nephrons and interstitium. Due to VEGF involvement in vasculogenesis and angiogenesis, abnormal VEGF appearance might lead to impaired formation of the blood vessel network in the human permanent kidney.  相似文献   

18.
19.
To evaluate the different traits of mesenchymal stem cell (MSC) isolated from osteosarcoma (OS) and normal bone marrow (BM) induced by bone-morphogenetic protein-2 (BMP-2). MSCs from implanted osteosarcoma or femur bone marrow were isolated and cultured. Differentiation potency was verified and phenotypes were evaluated by flow cytometry. Increased or decreased expressions of BMP-2 were delivered by adenovirus and lentivirus vector, respectively. Expressions of VEGF, EMMPRIN, and MMP-9 were examined. Cell cycle, apoptosis, invasiveness, and proliferation assays were performed between the transfected groups and controls. Increased BMP-2 induced over-expression of VEGF, EMMPRIN, and MMP-9 in OS- and BM-MSCs both intra- and extra-cellularly. Decreased BMP-2 expression induced inhibition of the factors. Increased BMP-2 also induced less population of cells at G1 phase, more apoptotic cells, more cells that invade through Transwell membrane, and faster proliferation in OSMSC compared to those in BMMSC. BMP-2 induced higher expression of tumorigenic factors, which could be responsible for promoting the proliferation and aggressiveness of OSMSC over BMMSC.  相似文献   

20.
Mesenchymal stem cells (MSCs) were treated with bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) dose-dependently and time-dependently. Together they caused a strong synergistic effect on the osteogenic differentiation of MSCs, with lower concentrations of each factor being enough to show the synergistic promotion (50 ng BMP-2/ml, 1 ng VEGF/ml and 10 ng bFGF/ml). When both VEGF and bFGF were added in the early proliferating stage (the first 7 days) and BMP-2 was added in the late differentiation stage (the last 7 days), osteogenic differentiation of MSCs could be enhanced more effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号