首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Homogeneous rabbit liver phosphorylase phosphatase (Brandt, H., Capulong, Z. L., and Lee, E. Y. C. (1975) J. Biol. Chem. 250, 8038-8044) also dephosphorylates glycogen synthase b. During purification, phosphorylase phosphatase and glycogen synthase phosphatase co-purified with a constant ratio of activities. The two activities co-migrated on disc gel electrophoresis. Both substrates competed with each other for the phosphatase, and both phosphatase activities were inhibited by lysine ethyl ester. It is concluded that liver phosphorylase phosphatase and glycogen synthase phosphatase have a common identity and that coordinate regulation of the phosphatase-catalyzed activation of glycogen synthase and inactivation of phosphorylase occurs in vivo. This provides a parallel and opposing mechanism to that mediated by adenosine 3':5'-monophosphate-dependent protein kinase, which coordinately inactivates glycogen synthase and, via phosphorylase kinase, activates phosphorylase. Maximal glycogen synthase phosphatase activity was observed near neutrality. Mg2+ and glucose-6-P activated the glycogen synthase phosphatase reaction and this activation was pH-dependent. The Km for glycogen synthase b was 0.12 muM.  相似文献   

2.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

3.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

4.
T B Miller 《Life sciences》1978,23(10):1083-1091
The large decreases in hepatic glycogen associated with alloxan diabetes in fed rats were accompanied by apparent decreases in total activities of glycogen synthase, phosphorylase, protein kinase and synthase phosphatase determined on 8000 × g supernatants of liver homogenates. Inclusion of 4% glycogen in the extraction buffer normalized total soluble activities of synthase in the diabetic. Whereas inclusion of 4% glycogen in the extraction buffer doubled total soluble phosphorylase, total activity remained lower in the diabetic than in the normal. Extraction and assay of soluble protein kinase were unaffected by added glycogen. When activities were determined on whole homogenates, total glycogen synthase activities were the same in normal and diabetic liver. Although the decreases in total activities of phosphorylase, kinase and phosphatase were less when determined on whole homogenates of livers from diabetic rats, the diabetes-related decreases in total activities remained significant. Therefore, it appears that while alloxan diabetes results in absolute decreases in total hepatic activities of phosphorylase, kinase and phosphatase, it may also result in redistribution of hepatic synthase and phosphorylase between soluble and particulate fractions, a phenomenon possibly related to tissue glycogen concentrations. Such a redistribution might be involved in the lack of control of hepatic glycogenesis observed in alloxan diabetic rats.  相似文献   

5.
The synthetic peptide hGH 177–191, corresponding to the last 15 residues at the carboxyl terminus of human pituitary growth hormone, promotes the conversion of glycogen synthase α to glycogen synthase b in muscle. When injected, the peptide was found to produce inactivation of glycogen synthase phosphatase activity in rat skeletal muscle. The time course of phosphatase inactivation was closely correlated with that for glycogen synthase. The peptide had no effect either on muscle 3′,5′-cyclic AMP levels or on synthase kinase activity. These results can be explained in terms of a dynamic cycle of interconversion of synthase between active and inactive forms, by the simultaneous action of synthase kinases and synthase phosphatases. A decrease in the ratio of phosphatase to kinase activity would result in a decrease in the steady-state level of synthase α activity.  相似文献   

6.
Glycogen synthase I was purified from rat skeletal muscle. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, the enzyme migrated as a major band with a subunit Mr of 85,000. The specific activity (24 units/mg protein), activity ratio (the activity in the absence of glucose-6-P divided by the activity in the presence of glucose-6-P X 100) (92 +/- 2) and phosphate content (0.6 mol/mol subunit) were similar to the enzyme from rabbit skeletal muscle. Phosphorylation and inactivation of rat muscle glycogen synthase by casein kinase I, casein kinase II (glycogen synthase kinase 5), glycogen synthase kinase 3 (kinase FA), glycogen synthase kinase 4, phosphorylase b kinase, and the catalytic subunit of cAMP-dependent protein kinase were similar to those reported for rabbit muscle synthase. The greatest decrease in rat muscle glycogen synthase activity was seen after phosphorylation of the synthase by casein kinase I. Phosphopeptide maps of glycogen synthase were obtained by digesting the different 32P-labeled forms of glycogen synthase by CNBr, trypsin, or chymotrypsin. The CNBr peptides were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and the tryptic and chymotryptic peptides were separated by reversed-phase HPLC. Although the rat and rabbit forms of synthase gave similar peptide maps, there were significant differences between the phosphopeptides derived from the N-terminal region of rabbit glycogen synthase and the corresponding peptides presumably derived from the N-terminal region of rat glycogen synthase. For CNBr peptides, the apparent Mr was 12,500 for rat and 12,000 for the rabbit. The tryptic peptides obtained from the two species had different retention times. A single chymotryptic peptide was produced from rat skeletal muscle glycogen synthase after phosphorylation by phosphorylase kinase whereas two peptides were obtained with the rabbit enzyme. These results indicate that the N-terminus of rabbit glycogen synthase, which contains four phosphorylatable residues (Kuret et al. (1985) Eur. J. Biochem. 151, 39-48), is different from the N-terminus of rat glycogen synthase.  相似文献   

7.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

8.
The effects of hypothyroidism on glycogen metabolism in rat skeletal muscle were studied using the perfused rat hindlimb preparation. Three weeks after propylthiouracil treatment, serum thyroxine was undetectable and muscle glycogen and Glc-6-P were decreased. Basal and epinephrine-stimulated phosphorylase a and phosphorylase b kinase activities were also significantly reduced, as were epinephrine-stimulated cAMP accumulation and cAMP-dependent protein kinase activity. Conversely, basal and epinephrine-stimulated glycogen synthase I activities were significantly higher while the Ka of the enzyme for Glc-6-P was lower in hypothyroid animals. Propylthiouracil-treated rats also had increased phosphoprotein phosphatase activities towards phosphorylase and glycogen synthase and decreased activity of phosphatase inhibitor 1. beta-Adrenergic receptor binding and basal and epinephrine-stimulated adenylate cyclase activities were reduced in muscle particulate fractions from hypothyroid rats. Administration of triiodothyronine to rats for 3 days after 3 weeks of propylthiouracil treatment restored the altered metabolic parameters to normal. It is proposed that the decreased beta-adrenergic responsiveness of the enzymes of glycogen metabolism in hypothyroid rat skeletal muscle is due to increased activity of phosphoprotein phosphatases and to reduced beta-adrenergic receptors and adenylate cyclase activity.  相似文献   

9.
Acute effects of two part sequences of human growth hormone on the in vivo activity levels of hepatic glycogen synthase and glycogen phosphorylase were examined. The peptide corresponding to residues 6 to 13 of the hormone (hGH 6--13) decreased the percentage of phosphorylase in the active form without affecting synthase activity. This action was indirect and dependent upon insulin. The peptide hGH 177--191 decreased the level of the active form of synthase without affecting phosphorylase activity. This effect was also observed with analogous peptides containing the sequence hGH 178--191 (i.e., hGH 172--191 and hGH 178--191), whereas the peptide hGH 179--191 was inert. The onset of these effects was rapid, and maximum changes in activity were produced in 5 min by both peptides. The effect for hGH 177--191 was short-lived, and synthase activity had returned to normal levels by 15 min, whereas the action of hGH 6--13 was of longer duration and was still quite marked at 60 min. Both peptides showed a linear dependence of response to the log dose of peptide injected over the range 0.1--250 microgram hGH 6--13 per kg body weight and 0.05--25 microgram hGH 177--191 per kg body weight. Hepatic 3',5'-cyclicadenylic acid levels were not affected by either peptide. Incorporation of glycerol carbon into liver glycogen was increased by hGH 6--13 and decreased by hGH carbon into liver glycogen was increased by hGH 6--13 and decreased by hGH 177--191. This is discussed in terms of a futile cycle between glycogen and hexose phosphate in the liver, as the basis for a control mechanism for hepatic glycogen metabolism. The present observations are consistent with other in vivo and in vitro actions of these and related peptides.  相似文献   

10.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

11.
To gain more insight into the nature of the substrate specificity of protein phosphatases, four forms of glycogen synthase D were used as substrates for previously characterized protein phosphatases, IA, IB, and II, from rat liver cytosol. The phosphatase activity was measured as the conversion of glycogen synthase D to synthase I. While glycogen synthase isolated from rat liver as the D-form was activated mainly by phosphatase IA, rabbit skeletal muscle glycogen synthase previously phosphorylated in vitro by cyclic AMP-dependent protein kinase or phosphorylase kinase was activated efficiently by phosphatases IA, IB, and II. Glycogen synthase isolated from rabbit skeletal muscle as the D-form, however, was a poor substrate for all three phosphatases. These results suggest that the phosphorylation state as well as the primary structure of synthase D markedly affects the rate of its activation by individual protein phosphatases. A protein phosphatase released from rat liver particulate glycogen, on the other hand, activated all forms of synthase D used here readily and at about the same rate.  相似文献   

12.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

13.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

14.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   

15.
Acute effects of two part sequences of human growth hormone on the in vivo activity levels of hepatic glycogen synthase and glycogen phosphorylase were examined. The peptide corresponding to residues 6 to 13 of the hormone (hGH 6–13) decreased the percentage of phosphorylase in the active form without affecting synthase activity. This action was indirect and dependent upon insulin. The peptide hGH 177–191 decreased the level of the active form of synthase without affecting phosphorylase activity. This effect was also observed with analogous peptides containing the sequence hGH 178–191 (i.e., hGH 172–191 and hGH 178–191), whereas the peptide hGH 179–191 was inert.The onset of these effects was rapid, and maximum changes in activity were produced in 5 min by both peptides. The effect for hGH 177–191 was short-lived, and synthase activity had returned to normal levels by 15 min, whereas the action of hGH 6–13 was of longer duration and was still quite marked at 60 min. Both peptides showed a linear dependence of response to the log dose of peptide injected over the range 0.1–250 μg hGH 6–13 per kg body weight and 0.05–25 gmg hGH 177–191 per kg body weight. Hepatic 3′,5′-cyclicadenylic acid levels were not affected by either peptide. Incorporation of glycerol carbon liver glycogen was increased by hGH 6–13 and decreased by hGH 177–191. This discussed in terms of a futile cycle between glycogen and hexone phosphate in the liver, as the basis for a control mechanism for hepatic glycogen metabolism. The present observations are consistent with other in vivo and in vitro actions of these and related peptides.  相似文献   

16.

Background

Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state.

Results

The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase.

Conclusion

The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different sensitivities of these two enzymes may exemplify the adaptive strategies employed by liver and muscle cells to meet specific cellular demands.
  相似文献   

17.
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction.  相似文献   

18.
A form of glycogen synthase kinase designated GSK-M3 was purified 4000-fold from rat skeletal muscle by phosphocellulose, Affi-Gel blue, Sephacryl S-300 and carboxymethyl-Sephadex column chromatography. Separation of GSK-M from the catalytic subunit of the cAMP-dependent protein kinase was facilitated by converting the catalytic subunit to the holoenzyme form by addition of the regulatory subunit prior to the gel filtration step. GSK-M had an apparent Mr 62,000 (based on gel filtration), an apparent Km of 11 microM for ATP, and an apparent Km of 4 microM for rat skeletal muscle glycogen synthase. The kinase had very little activity with 0.2 mM GTP as the phosphate donor. Kinase activity was not affected by the addition of cyclic nucleotides, EGTA, heparin, glucose 6-P, glycogen, or the heat-stable inhibitor of cAMP-dependent protein kinase. Phosphorylation of glycogen synthase from rat skeletal muscle by GSK-M reduced the activity ratio (activity in the absence of Glc-6-P/activity in the presence of Glc-6-P X 100) from 90 to 25% when approximately 1.2 mol of phosphate was incorporated per mole of glycogen synthase subunit. Phosphopeptide maps of glycogen synthase obtained after digestion with CNBr or trypsin showed that this kinase phosphorylated glycogen synthase in serine residues found in the peptides containing the sites known as site 2, which is located in the N-terminal CNBr peptide, and site 3, which is located in the C-terminal CNBr peptide of glycogen synthase. In addition to phosphorylating glycogen synthase, GSK-M phosphorylated inhibitor 2 and activated ATP-Mg-dependent protein phosphatase. Activation of the protein phosphatase by GSK-M was dependent on ATP and was virtually absent when ATP was replaced with GTP. GSK-M had minimal activity toward phosphorylase b, casein, phosvitin, and mixed histones. These data indicate that GSK-M, a major form of glycogen synthase kinase from rat skeletal muscle, differs from the known glycogen synthase kinases isolated from rabbit skeletal muscle.  相似文献   

19.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

20.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号