首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO2. Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O2 as alternative electron acceptors. Optimum growth was observed at 30°C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes.  相似文献   

2.
Studies on the microorganisms living in hydrocarbon-contaminated sediments in San Diego Bay, California led to the isolation of a novel Fe(III)-reducing microorganism. This organism, designated strain SDBY1, was an obligately anaerobic, non-motile, non-flagellated, gram-negative rod. Strain SDBY1 conserves energy to support growth from the oxidation of acetate, lactate, succinate, fumarate, laurate, palmitate, or stearate. H2 was also oxidized with the reduction of Fe(III), but growth with H2 as the sole electron donor was not observed. In addition to various forms of soluble and insoluble Fe(III), strain SDBY1 also coupled growth to the reduction of fumarate, Mn(IV), or S0. Air-oxidizedminus dithionite-reduced difference spectra exhibited peaks at 552.8, 523.6, and 422.8 nm, indicative ofc-type cytochrome(s). Strain SDBY1 shares physiological characteristics with organisms in the generaGeobacter, Pelobacter, andDesulfuromonas. Detailed analysis of the 16S rRNA sequence indicated that strain SDBY1 should be placed in the genusDesulfuromonas. The new species nameDesulfuromonas palmitatis is proposed.D. palmitatis is only the second marine organism found (afterD. acetoxidans) to oxidize multicarbon organic compounds completely to carbon dioxide with Fe(III) as an electron acceptor and provides the first pure culture model for the oxidation of long-chain fatty acids coupled to Fe(III) reduction.  相似文献   

3.
Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5–10. Strain E1H had a salinity optimum at 60 g l–1 NaCl, while strain MLS10 had optimal growth at lower salinities (24–60 g l–1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria. Received: 21 May 1998 / Accepted: 31 August 1998  相似文献   

4.
Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H2 to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction.  相似文献   

5.
Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H(2) to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction.  相似文献   

6.
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed.  相似文献   

7.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

8.
A new type of sulfate-reducing bacteria with ellipsoidal to lemon-shaped cells was regularly enriched from anaerobic freshwater and marine mud samples when mineral media with propionate and sulfate were used. Three strains (1pr3, 2pr4, 3pr10) were isolated in pure culture. Propionate, lactate and alcohols were used as electron donors and carbon sources. Growth on H2 required acetate as a carbon source in the presence of CO2. Stoichiometric measurements revealed that oxidation of propionate was incomplete and led to acetate as an endproduct. Instead of sulfate, strain 1pr3 was shown to reduce sulfite and thiosulfate to H2S; nitrate also served as electron acceptor and was reduced to ammonia. With lactate or pyruvate, all three strains were able to grow without external electron acceptor and formed propionate and acetate as fermentation products. None of the strains contained desulfoviridin. In strain 1pr3 cytochromes of the b- and c-type were identified. Strain 1pr3 is described as type strain of the new species and genus, Desulfobulbus propionicus.  相似文献   

9.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

10.
Sulfate-reducing bacteria with oval to rod-shaped cells (strains AcRS1, AcRS2) and vibrio-shaped cells (strains AcRM3, AcRM4, AcRM5) differing by size were isolated from anaerobic marine sediment with acetate as the only electron donor. A vibrio-shaped type (strain AcKo) was also isolated from freshwater sediment. Two strains (AcRS1, AcRM3) used ethanol and pyruvate in addition to acetate, and one strain (AcRS1) grew autotrophically with H2, sulfate and CO2. Higher fatty acids or lactate were never utilized. All isolates were able to grow in ammonia-free medium in the presence of N2. Nitrogenase activity under such conditions was demonstrated by the acetylene reduction test. The facultatively lithoautotrophic strain (AcRS1), a strain (AcRS2) with unusually large cells (2×5 m), and a vibrio-shaped strain (AcRM3) are described as new Desulfobacter species, D. hydrogenophilus, D. latus, and D. curvatus, respectively.  相似文献   

11.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

12.
Two obligately anaerobic sulfidogenic bacterial strains were isolated from the full-scale Thiopaq bioreactor in Lelystad (The Netherlands) removing H2S from biogas under oxygen-limiting and moderately haloalkaline conditions. Strain HSRB-L represents a dominant culturable sulfate-reducing bacterium in the reactor. It utilizes formate, H2 (with acetate as C-source) and lactate as e-donors, and sulfate, thiosulfate and sulfite as e-acceptors. It is haloalkalitolerant, with a pH range for lithotrophic growth from 7.5 to 9.7 (optimum at 8.5–9) and a salt range from 0.1 to 1.75 M total Na+ (optimum at 0.6 M). The strain is a member of the genus Desulfonatronum and is proposed as a novel species D. alkalitolerans. The second strain, strain HTRB-L1, represents a dominant thiosulfate/sulfur reducer in the reactor. It is an obligate anaerobe utilizing formate and H2 (with acetate as C-source), lactate, pyruvate and fumarate as e-donors, and thiosulfate (incomplete reduction), sulfur, arsenate and fumarate as e-acceptors. With lactate as e-donor it also grows as an ammonifyer in the presence of nitrate and nitrite. HTRB-L1 is haloalkalitolerant, with a pH range for lithotrophic growth from 7.1 to 9.7 (optimum at 8.5) and a salt range from 0.6 to 1.5 M total Na+ (optimum at 0.6 M). Phylogenetic analysis showed that strain HTRB-L1 is a novel species within the genus Sulfurospirillum (Epsilonproteobacteria) for which a name Sulfurospirillum alkalitolerans is proposed.  相似文献   

13.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   

14.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

15.
As part of a study on the microbiology of chlorate reduction, several new dissimilatory chlorate-reducing bacteria were isolated from a broad diversity of environments. One of these, strain CKB, was selected for a more complete characterization. Strain CKB was enriched and isolated from paper mill waste with acetate as the sole electron donor and chlorate as the sole electron acceptor. Strain CKB is a completely oxidizing, non-fermentative, Gram-negative, facultative anaerobe. Cells of strain CKB are 0.5 x 2 microm and are highly motile, with a single polar flagellum. In addition to acetate, strain CKB can use propionate, butyrate, lactate, succinate, fumarate, malate or yeast extract as electron donors, with chlorate as the sole electron acceptor. Strain CKB can also couple chlorate reduction to the oxidation of ferrous iron, sulphide, or the reduced form of the humic substances analogue 2,6-anthrahydroquinone disulphonate. Fe(II) is oxidized to insoluble amorphous Fe(II) oxide, whereas sulphide is oxidized to elemental sulphur. Growth is not associated with this metabolism, even when small quantities of acetate are added as a potential carbon source. In addition to chlorate, strain CKB can also couple acetate oxidation to the reduction of oxygen or perchlorate. Chlorate is completely reduced to chloride. Strain CKB has an optimum temperature of 35 degrees C, a pH optimum of 7.5 and a salinity optimum of 1% NaCl. Strain CKB can grow in chlorate and perchlorate concentrations of 80 or 20 mM respectively. Under anaerobic conditions, strain CKB can dismutate chlorite into chloride and O2, and is only the second organism shown to be capable of this metabolism. Oxidized minus reduced spectra of whole-cell suspensions of strain CKB showed absorbance maxima at 423, 523 and 552nm, which are indicative of the presence of c-type cytochrome(s). Analysis of the complete sequence of the 16S rDNA indicates that strain CKB is a member of the beta subclass of the Proteobacteria. The phototroph Rhodocyclus tenuis is the closest known relative. When tested, strain CKB could not grow by phototrophy and did not contain bacteriochlorophyll. Phenotypically and phylogenetically, strain CKB differs from all other described bacteria and represents the type strain of a new genus and species.  相似文献   

16.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed.  相似文献   

17.
Anaerobic enrichments with H2 as electron donor and thiosulfate/polysulfide as electron acceptor at pH 10 and 0.6 M total Na+ yielded two non sulfate-reducing representatives of reductive sulfur cycle from soda lake sediments. Strain AHT 1 was isolated with thiosulfate as the electron acceptor from north–eastern Mongolian soda lakes and strain AHT 2—with polysulfide as the electron acceptor from Wadi al Natrun lakes in Egypt. Both isolates represented new phylogenetic lineages: AHT 1—within Clostridiales and AHT 2—within the Deltaproteobacteria. Both bacteria are obligate anaerobes with respiratory metabolism. Both grew chemolithoautotrophically with H2 as the electron donor and can use thiosulfate, elemental sulfur and polysulfide as the electron acceptors. AHT 2 also used nitrate as acceptor, reducing it to ammonia. During thiosulfate reduction, AHT 1 excreted sulfite. dsrAB gene was not found in either strain. Both strains were moderate salt-tolerant (grow up to 2 M total Na+) true alkaliphiles (grow between pH 8.5 and 10.3). On the basis of the phenotypic and phylogenetic data, strains AHT 1 and AHT 2 are proposed as new genera and species Dethiobacter alkaliphilus and Desulfurivibrio alkaliphilus, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence accession number: The GenBank/EMBL accession number of the 16S rRNA gene sequence of strains AHT 1T and AHT 2T are EF422412 and EF422413.  相似文献   

18.
A novel strictly anaerobic bacterium designated SPDX02-08T was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1–2 × 2–6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08T grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08T completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08T required yeast extract to oxidize formate and H2 but did not grow autotrophically on H2. Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08T were iso-C15:0, C15:0, and C16:0. Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08T belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08T and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08T is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937T = JCM 16410T). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08T is HM056226.  相似文献   

19.
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.  相似文献   

20.
A new Desulfovibrio strain ThAc01 was isolated from freshwater mud; the strain conserved energy for growth under strictly anaerobic conditions by disproportionation of thiosulfate or sulfite to sulfate and sulfide according to the following reactions: $$\begin{gathered} S_2 O_3^{2 - } + H_2 O \to SO_4^{2 - } + HS^ - + H^ + \hfill \\ 4SO_3^{2 - } + H^ + {\text{ }} \to 3SO_4^{2 - } + HS^ - \hfill \\ \end{gathered}$$ Strain ThAc01 required acetate as a carbon source, but was unable to utilize acetate as an oxidizable energy source. In a defined medium with acetate and bicarbonate as carbon sources, the growth yields per mol of substrate disproportionated were 2.1 g or 3.2 g dry cell mass on thiosulfate or sulfite, respectively. Strain ThAc01 was also able to grow by dissimilatory sulfate reduction with lactate, ethanol, propanol, or butanol as electron donors and carbon sources which were incompletely oxidized to the corresponding fatty acids. However, growth by sulfate reduction was slower than by disproportionation. Elemental sulfur, nitrate, fumarate, or malate did not serve as electron acceptors. Strain ThAc01 contained desulfoviridin and cytochromes; it required panthothenate and biotin as growth factors and had a DNA base ratio of 64.1 mol% G+C. Disproportionating bacteria similar to strain ThAc01 were enriched with either thiosulfate or sulfite from various freshwater, brackish or marine mud samples. Most probable number enumeration indicated that 2×106 thiosulfate-disproportionating bacteria were present per ml freshwater mud. Of various other sulfate-reducing bacteria tested, only Desulfobacter curvatus (strain AcRM3) was able to disproportionate thiosulfate or sulfite. Desulfovibrio vulgaris (strain Marburg) slowly disproportionated sulfite, but effected only a slight increase in cell density. Strain ThAc01 is proposed as the type strain of a new species, Desulfovibrio sulfodismutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号