首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

2.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

3.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

4.
组胺对肺动脉内皮细胞一氧化氮合酶基因表达的影响   总被引:4,自引:1,他引:3  
Lu DQ  Li HG  Ye H  Ye SQ  Jin S  Wang DX 《生理学报》2004,56(3):288-294
本实验研究了组胺对原代培养的肺动脉内皮细胞一氧化氮合酶(nitric oxidCsynthase,NOS)基因表达的影响及分子机制。采用RT-PCR和免疫印迹技术分别检测mRNA和蛋白质的表达水平,用荧光素酶报告基因实验检测eNOS基因转录起始点上游长1.6-kb的启动子活性,用硝酸还原酶法检测NO的产量。结果发现,组胺增强eNOS表达,呈浓度和时间依赖性,10μmol/L组胺处理肺动脉内皮细胞24h可使eNOS mRNA和蛋白质的表达达到高峰,eNOS mRNA水平为正常对照组的160.8±12.2%(P<0.05),蛋白质水平为正常对照组的136.2±11.2%(P<0.05)。特异性CaMK Ⅱ抑制剂KN-93可抑制组胺的这一效应,表明组胺可通过激活CaMK Ⅱ增强肺动脉内皮细胞eNOS基因的表达。报告基因实验表明,10μmol/L组胺处理24h后肺动脉内皮细胞eNOS基因启动子的活性增强,为正常对照组的148.2±33.7%(P<0.05)。组胺可使肺动脉内皮细胞产生NO增加。这些结果表明组胺在转录水平增强肺动脉内皮细胞eNOS基因的表达,并使细胞产生NO增加,这可能是组胺调节肺血管张力的机制之一。CaMK Ⅱ可能是组胺增强肺动脉内皮细胞eNOS基因表达的途径之一。  相似文献   

5.
Tetrahydrobiopterin (BH4) acts as an important co-factor for endothelial nitric oxide synthase (eNOS). Glucocorticoids have been shown to inhibit expression of the rate-limiting enzyme for tetrahydrobiopterin synthesis, GTP cyclohydrolase, in other cell types. We hypothesized that endothelium-dependent vasodilator responses would be blunted in rats made hypertensive with dexamethasone. Further, we hypothesized that treatment of rat vascular segments with dexamethasone would result in attenuation of endothelial function accompanied by decreased GTP cyclohydrolase expression. We report that endothelium-dependent relaxation responses to the calcium ionophore A23187 are reduced in aortic rings from dexamethasone-hypertensive rats compared with sham values. Dexamethasone incubation abolishes contraction to Nomega-nitro-L-arginine (L-NNA, 10(-5) M) in endothelium-intact aortic rings, and inhibits expression of GTP cyclohydrolase. We conclude that inhibition of BH4 synthesis by glucocorticoid regulation of GTP cyclohydrolase expression may contribute to reduced endothelium-dependent vasodilation characteristic of glucocorticoid-induced hypertension.  相似文献   

6.
Lau CW  Chen ZY  Wong CM  Yao X  He Z  Xu H  Huang Y 《Life sciences》2004,75(10):1149-1157
Acteoside and other phenylethanoid glycoside are contained in many plants that are widely used in traditional Chinese herbal medicine. Acteoside possesses multiple biological actions. Its effect on the vascular system is, however, incompletely understood. This study was aimed to investigate the role of endothelial [Ca2+]i, nitric oxide (NO), and cyclic GMP in acteoside-induced inhibition of endothelial NO-mediated relaxation in rat aorta. Acteoside reduced endothelial NO-dependent relaxation induced by acetylcholine (Ach) or A23187. Acteoside inhibited Ach-stimulated increase in tissue content of cyclic GMP in endothelium-intact rings. L-NNA abolished the stimulatory effect of Ach. Treatment with acteoside significantly suppressed bradykinin-induced increase in [Ca2+]i of cultured rat aortic endothelial cells. Acute exposure to acteoside (30 μM) did not affect the expression of eNOS mRNA in endothelium-intact rings. In summary, acteoside impairs endothelial NO-mediated aortic relaxation partially through inhibition of agonist-induced endothelial Ca2+ mobilization and Ca2+-dependent NO production and subsequent suppression of cyclic GMP formation. This novel pharmacological action if occurring in small vessels in vivo, may contribute to the reported anti-inflammatory effect of acteoside against NO-mediated vascular permeability-related acute edema.  相似文献   

7.
Many functions of endothelial cells are Ca(2+)/calmodulin dependent, whereas the role of calmodulin in the regulation of cytosolic Ca(2+) ([Ca(2+)](i)) remains largely unexplained. In the present study, effects of various calmodulin antagonists on [Ca(2+)](i) were investigated in cultured aortic endothelial cells loaded with the Ca(2+)-sensitive dye fura-2/AM, and were compared with those of calmodulin-dependent protein kinase II (CaM kinase II) inhibitors. The calmodulin antagonists W-7, calmidazolium and fendiline provoked dose-dependent increases in [Ca(2+)](i). However, the CaM kinase II inhibitors KN-93 and lavendustin C had no effect on [Ca(2+)](i). In the absence of extracellular Ca(2+), pretreatment of cells with bradykinin (BK) and thapsigargin completely prevented W-7-stimulated increase in [Ca(2+)](i). Alternatively, pretreatment with W-7 also completely blocked BK- and thapsigargin-stimulated increases in [Ca(2+)](i). The time course of the Ca(2+)-response in W-7 treated cells was identical to that in thapsigargin-treated cells, but not that in BK-stimulated cells, suggesting that calmodulin antagonists could share a common signaling pathway with thapsigargin to increase [Ca(2+)](i) in endothelial cells. These findings indicate that calmodulin is involved in the regulation of [Ca(2+)](i), and may play an important role in the uptake of Ca(2+) to intracellular stores.  相似文献   

8.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

9.
Huang Y  Bourreau JP  Chan HY  Lau CW  Wong JW  Yao X 《Life sciences》2001,69(14):1661-1672
Apart from the well-described K+ channel blocking effects in vascular smooth muscle cells, monovalent quaternary ammonium ions may also interact with endothelial cells in the endothelium-intact mammalian arteries. The present study was aimed to examine the effect of tetrabutylammonium ions on endothelium-dependent and -independent relaxation in the rat isolated aortic rings. Pretreatment with tetrabutylammonium concentration dependently reduced the endothelium-dependent relaxation induced by acetylcholine, cyclopiazonic acid and ionomycin. Tetrabutylammonium also inhibited endothelium-independent relaxation induced by hydroxylamine or nitroprusside. Pretreatment of endothelium-denuded rings with tetrabutylammonium did not affect relaxation induced by NS1619 or by diltiazem. In contrast, tetrabutylammonium significantly reduced the pinacidil- or cromakalim-induced relaxation. Tetrabutylammonium also inhibited the acetylcholine- but not nitroprusside-induced increase of tissue content of cyclic GMP in the aortic rings. The present study indicates that tetrabutylammonium ions could inhibit endothelial and exogenous nitric oxide-mediated aortic relaxation while it had no effect on relaxation induced by activation of Ca2+-activated K+ channels (by NS1619) or by inhibition of voltage-gated Ca2+ channels (by diltiazem). The inhibitory effect on pinacidil- and cromakalim-induced relaxation suggests that tetrabutylammonium ions also inhibit ATP-sensitive K+ channels in aortic smooth muscle cells.  相似文献   

10.
Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS.  相似文献   

11.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

12.
We tested the hypothesis that chronic high-altitude (3,820 m) hypoxia during pregnancy was associated with the upregulation of endothelial nitric oxide (NO) synthase (eNOS) protein and mRNA in ovine uterine artery endothelium and enhanced endothelium-dependent relaxation. In pregnant sheep, norepinephrine-induced dose-dependent contractions were increased by removal of the endothelium in both control and hypoxic uterine arteries. The increment was significantly higher in hypoxic tissues. The calcium ionophore A23187-induced relaxation of the uterine artery was significantly enhanced in hypoxic compared with control tissues. However, sodium nitroprusside- and 8-bromoguanosine 3',5'-cyclic monophosphate-induced relaxations were not changed. Accordingly, chronic hypoxia significantly increased basal and A23187-induced NO release. Chronic hypoxia increased eNOS protein and mRNA levels in the endothelium from uterine but not femoral or renal arteries. In nonpregnant animals, chronic hypoxia increased eNOS mRNA in uterine artery endothelium but had no effects on eNOS protein, NO release, or endothelium-dependent relaxation. Chronic hypoxia selectively augments pregnancy-associated upregulation of eNOS gene expression and endothelium-dependent relaxation of the uterine artery.  相似文献   

13.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

14.
The delta-isoform of Ca(2+)/calmodulin-activated protein kinase II (CaMK II) is abundantly expressed in vascular smooth muscle, but relatively little is known about its regulation or its potential cellular substrates. There are few, if any, known substrates of CaMK II that are physiologically relevant in vascular smooth muscle cells. Studies presented earlier (Mishra-Gorur, K., Singer, H. A., and Castellot, J. J., Jr. (2002) Am. J. Pathol., in press) by our laboratory show an inhibitory effect of heparin on CaMK II phosphorylation and activity. During these studies we observed the specific co-immunoprecipitation of a 20-kDa protein with CaMK II. Purification and sequence analysis indicate that this protein is the S18 protein of the 40 S ribosome. S18 was found to be abundantly phosphorylated in response to serum treatment, and this effect was strongly inhibited by heparin. In addition, KN-93, a specific CaMK II inhibitor, blocks S18 phosphorylation in vascular smooth muscle cells; a concomitant 24% reduction in protein synthesis was observed. Taken together these data support the idea that S18 could be a novel substrate for CaMK II, thus providing a potential link between Ca(2+)-mobilizing agents and protein translation.  相似文献   

15.
目的:观测流体剪切应力对血管内皮细胞NO合成酶(nitric oxidesynthase,NOS)活性的影响并探讨其发生机制。方法:采用Griess 方法测定不同流体剪切应力作用下血管内皮细胞中NOS活性的变化;并观测多种NOS干预物质对这种变化的影响。结果:剪切应力显著提高血管内皮细胞中NOS活性;地塞米松(dexamethasone)实验表明,剪切应力这种作用主要是通过对结构型NOS活性的增强实现的,且具有明显的剂量和时间依赖性;放线菌酮(cycloheximide)非特异性地抑制细胞中NOS酶蛋白合成,但cycloheximide 处理组中受剪切应力作用细胞NOS活性仍显著高于其对照细胞,仅升高幅度明显降低。A23187 处理后细胞中NOS活性升高约达2 倍,其中剪切应力作用细胞的NOS活性显著高于其对照,但这种变化程度亦较A23187 未处理组明显减小。结论:剪切应力显著提高血管内皮细胞eNOS活性:eNOS酶蛋白合成增加和细胞内Ca2+ 浓度的升高在剪切应力对血管内皮细胞NOS活性的调节机制中具有重要意义  相似文献   

16.
We recently reported that soy isoflavones increase gene expression of endothelial nitric-oxide synthase (eNOS) and antioxidant defense enzymes, resulting in improved endothelial function and lower blood pressure in vivo. In this study, we establish that equol (1-100 nM) causes acute endothelium- and nitric oxide (NO)-dependent relaxation of aortic rings and rapidly (2 min) activates eNOS in human aortic and umbilical vein endothelial cells. Intracellular Ca2+ and cyclic AMP levels were unaffected by treatment (100 nM, 2 min) with equol, daidzein, or genistein. Rapid phosphorylation of ERK1/2, protein kinase B/Akt, and eNOS serine 1177 by equol was paralleled by association of eNOS with heat shock protein 90 (Hsp90) and NO synthesis in human umbilical vein endothelial cells, expressing estrogen receptors (ER)alpha and ERbeta. Inhibition of phosphatidylinositol 3-kinase and ERK1/2 inhibited eNOS activity, whereas pertussis toxin and the ER antagonists ICI 182,750 and tamoxifen had negligible effects. Our findings provide the first evidence that nutritionally relevant plasma concentrations of equol (and other soy protein isoflavones) rapidly stimulate phosphorylation of ERK1/2 and phosphatidylinositol 3-kinase/Akt, leading to the activation of NOS and increased NO production at resting cytosolic Ca2+ levels. Identification of the nongenomic mechanisms by which equol mediates vascular relaxation provides a basis for evaluating potential benefits of equol in the treatment of postmenopausal women and patients at risk of cardiovascular disease.  相似文献   

17.
The mechanisms of NO inhibition of CaMK [Ca(2+)/CaM (calmodulin)-dependent protein kinase] II activity were studied. In rat pituitary tumour GH3 cells, TRH [thyrotrophin (TSH)-releasing hormone]-stimulated phosphorylation of nNOS [neuronal NOS (NO synthase)] at Ser(847) was sensitive to an inhibitor of CaMKs, KN-93, and was enhanced by inhibition of nNOS with 7NI (7-nitroindazole). Enzyme activity of CaMKII following in situ treatment with 7NI was also increased. The in vitro activity of CaMKII was inhibited by co-incubation either with nNOS and L-arginine or with NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) and DEA-NONOate [diethylamine-NONOate (diazeniumdiolate)]. Once inhibited by these treatments, CaMKII was observed to undergo full reactivation on the addition of a reducing reagent, DTT (dithiothreitol). In transfected cells expressing CaMKII and nNOS, treatment with the calcium ionophore A23187 further revealed nNOS phosphorylation at Ser(847), which was enhanced by 7NI and CaMKII S-nitrosylation. Mutated CaMKII (C6A), in which Cys(6) was substituted with an alanine residue, was refractory to 7NI-induced enhancement of nNOS phosphorylation or to CaMKII S-nitrosylation. Furthermore, we could identify Cys(6) as a direct target for S-nitrosylation of CaMKII using MS. In addition, treatment with glutamate caused an increase in CaMKII S-nitrosylation in rat hippocampal slices. This glutamate-induced S-nitrosylation was blocked by 7NI. These results suggest that inactivation of CaMKII mediated by S-nitrosylation at Cys(6) may contribute to NO-induced neurotoxicity in the brain.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

19.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号