首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The aim of the current study is to identify the adipokinetic hormone(s) (AKHs) of a basal suborder of the species‐rich Coleoptera, the Adephaga, and possibly learn more about the ancestral AKH of beetles. Moreover, we wanted to compare the ancestral AKH with AKHs of more advanced beetles, of which a number are pest insects. This would allow us to assess whether AKH mimetics would be suitable as insecticides, that is, be harmful to the pest species but not to the beneficial species. Nine species of the Adephaga were investigated and all synthesize only one octapeptide in the corpus cardiacum, as revealed by Edman degradation sequencing techniques or by mass spectrometry. The amino acid sequence pGlu‐Leu‐Asn‐Phe‐Ser‐Thr‐Gly‐Trp corresponds to Schgr‐AKH‐II that was first identified in the desert locust. It is assumed that Schgr‐AKH‐II—the peptide of a basal beetle clade—is the ancestral AKH for beetles. Some other beetle families, as well as some Hymenoptera (including honey bees) also contain this peptide, whereas most of the pest beetle species have different AKHs. This argues that those peptides and their receptors should be explored for developing mimetics with insecticidal properties. A scenario where Schgr‐AKH‐II (the only AKH of Adephaga) is used as basic molecular structure to derive almost all other known beetle AKHs via single step mutations is very likely, and supports the interpretation that Schgr‐AKH‐II is the ancestral AKH of Coleoptera.  相似文献   

2.
Seventeen species of the coleopteran series Cucujiformia are investigated for the presence and sequence of putative adipokinetic hormones (AKHs). Cucujiformia includes species from the major superfamilies, that is, Chrysomeloidea, Curculionoidea, Cucujoidea, and Tenebrionoidea. The clade Phytophaga in which the Chrysomeloidea and Curculionoidea reside, harbor very detrimental species for agriculture and forestry. Thus, this study aims not only to demonstrate the structural biodiversity of AKHs in these beetle species and possible evolutionary trends but also to determine whether the AKHs from harmful pest species can be used as lead substances for a future putative insecticide that is harmless to beneficial insects. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. Most of the investigated species contain AKH octapeptides in their corpora cardiaca, although previously published work also found a few decapeptides, which we comment on. The signature and sole AKH in cerambycidae Chrysomeloidea and Curculionoidea is Peram‐CAH‐I (pEVNFSPNW amide), which is also found in the majority of chrysomelidae Chrysomeloidea and in the one investigated species of Cucujoidea albeit in a few cases associated with a second AKH which can be either Peram‐CAH‐II (pELTFTPNW amide), Emppe‐AKH (pEVNFTPNW amide), or Micvi‐CC (pEINFTPNW amide). The most often encountered AKH in Tenebrionoidea, family Meloidae as well as family Tenebrionidae, is Tenmo‐HrTH (pELNFSPNW amide) followed by Pyrap‐AKH (pELNFTPNW amide) and a Tenmo‐HrTH extended decapeptide (in Meloidae). Finally, we examine AKH sequences from 43 species of cucujiform beetles, including the superfamily Coccinelloidea for a possible lead compound for producing a cucujiform‐specific pesticide.  相似文献   

3.
The adipokinetic hormones (AKHs) from 15 species of heteropteran Hemiptera (encompassing eight families, six superfamilies and three infraorders) have been isolated and structurally identified using liquid chromatography coupled with mass spectrometry. None of the structures are novel and all are octapeptides. These peptide sequence data are used, together with the previously available AKH sequence data on Heteroptera, to create a larger dataset for comparative analyses. This results, in total, in AKH sequences from 30 species (spanning 13 families), which are used in a matrix confronted with the current hypotheses on the phylogeny of Heteroptera. The expanded dataset shows that all heteropterans have octapeptide AKHs; three species have two AKHs, whereas the overwhelming majority have only one AKH. From a total of 11 different AKH peptides known from Heteroptera to date, three AKHs occur frequently: Panbo‐red pigment‐concentrating hormone (RPCH) (×10), Schgr‐AKH‐II (×6) and Anaim‐AKH (×4). The heteropteran database also suggests that particular AKH variants are family‐specific. The AKHs of Heteroptera: Pentatomomorpha (all terrestrial) are not present in Nepomorpha (aquatic) and Gerromorpha: Gerridae (semiaquatic); AKHs with a Val in position 2 are absent in the Pentatomomorpha (only AKHs with Leu2 are present), whereas Val2 predominates in the nonterrestrial species. An unexpected diversity of AKH sequences is found in Nepomorpha, Nepoidea, Nepidae and Nepinae, whereas Panbo‐RPCH (which has been identified in all infraorders of decapod crustaceans) is present in all analysed species of Pentatomidae and also in the only species of Tessaratomidae investigated. The molecular evolution of Heteroptera with respect to other insect groups and to crustaceans is discussed  相似文献   

4.
The large white butterfly Pieris brassicae L. (also called cabbage white) is very common in Europe, Asia and the northern region of Africa, and has also been found in South Africa during approximately the last 20 years. The species is considered a pest insect, with larvae attacking brassicaceous crops. The adult is a strong migratory flyer and new territory can be infested this way. As a first step to investigate methods for combating this pest species, the present study aims to determine the complement of adipokinetic peptides, here generically referred to as adipokinetic hormones (AKHs), which are required to regulate the mobilization of fuels for insect flight. Biological assays, as well as mass spectrometry, reveal information about the presence, structure and function of AKHs in P. brassicae: a methanolic extract of the corpora cardiaca has hypertrehalosaemic activity in cockroaches, does not cause hyperlipaemia in locusts, and has adipokinetic activity in P. brassicae itself. Liquid‐chromatography electrospray ion trap mass spectrometry reveals three peptides that can be associated with the AKH family: the non‐amidated undecapeptide Vanca‐AKH (pELTFTSSWGGK‐OH), the nonapeptide Manse‐AKH (pELTFTSSWG amide) and the novel octapeptide Piebr‐AKH (pELTFSSGW amide). Sequence confirmation of all three assigned structures is obtained from matching mass spectrometry spectra from synthetic and native peptides. Moreover, the synthetic peptides Manse‐AKH and Piebr‐AKH have significant hyperlipaemic (=adipokinetic) activity when injected into newly‐emerged adult cabbage white butterflies. The non‐amidated Vanca‐AKH is, apparently, incompletely processed Manse‐AKH without hormonal activity. Simulated dispersal flight is able to release AKHs, as indicated by the higher concentration of lipids in the haemolymph of adult P. brassicae after activity and rest periods.  相似文献   

5.
Abstract The adipokinetic hormone (AKH) of the large milkweed bug Oncopeltus fasciatus is isolated from an acidified methanolic extract of 200 corpora cardiaca, purified by single step reversed phase high‐performance liquid chromatography (HPLC) and N‐terminally deblocked using pyroglutamate aminopeptidase. The sequence is identified by Edman degradation and matrix assisted laser desorption/ionization‐time of flight mass spectroscopy as pGlu‐Leu‐Asn‐Phe‐Ser‐Pro‐Asn‐Trp amide. This structure is confirmed by chemical synthesis and coelution of native and synthetic peptide on HPLC. The AKH of O. fasciatus is identical to Tenmo‐HrTH, a member of the adipokinetic/red pigment‐concentrating hormone peptide family that had been isolated earlier from several tenebrionid beetles. Tenmo‐HrTH causes a significant rise in the concentration of haemolymph lipids when injected into adult male and female O. fasciatus, but displays no hyperglycaemic activity. There is no indication of the presence of other AKHs in O. fasciatus. The large milkweed bug represents the first member of the seed bugs (Lygaeidae) for which the endogenous AKH has been identified.  相似文献   

6.
Gäde G  Marco HG 《ZooKeys》2011,(157):81-94
The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles.  相似文献   

7.
Four African species of true water bugs (Nepomorpha: Hemiptera: Heteroptera) are studied by mass spectrometry and biological assays to gain information on the presence, structure and function of peptides from the adipokinetic hormone (AKH) family, which are produced in the corpora cardiaca (CC). The water scorpion Laccotrephes fabricii Stål (Nepidae) has the peptide code‐named Peram‐CAH‐I with the sequence pGlu‐Val‐Asn‐Phe‐Ser‐Pro‐Asn‐Trp amide, whereas Appasus grassei Poisson (Belostomatidae) produces Anaim‐AKH, which is a Ser7 analogue of Peram‐CAH‐I (pGlu‐Val‐Asn‐Phe‐Ser‐Pro‐Ser‐Trp amide). The giant water bug Hydrocyrius columbiae Spinola (Belostomatidae) has two adipokinetic hormone family members: Anaim‐AKH and Letin‐AKH, which again differ only at position 7 (Ser7 versus Tyr7). When the sequence data are compared with current molecular phylogenetic analyses of Nepomorpha, they are essentially in agreement with the newest ideas on phylogenetic relationships among the families. Functional investigation of these peptides reveals a mainly lipid‐based energy metabolism in these insects, as demonstrated by a hyperlipaemic response after injecting crude CC extract or the appropriate peptide into the respective species. The carbohydrate concentration in the haemolymph is not affected by such injections, and the carbohydrate level in most cases is lower than that of the circulating lipids. During physical exercise, such as swimming for 1 h, carbohydrates may contribute to some extent to the provision of energy; the substantial increase in the concentration of lipids in the haemolymph, however, is a strong indicator that the peptides are released from the CC and act primarily as true adipokinetic hormones during this period of intense muscular activity.  相似文献   

8.
We have isolated a novel member of the adipokinetic hormone family of peptides from a methanolic extract of corpora cardiaca of the libellulid dragonfly Erythemis simplicicollis by using a single‐step reversed‐phase high performance liquid chromatography method and monitoring biological activity in various heterologous bioassays and a homologous one. The sequence, as determined by Edman degradation and mass spectrometry, was of an uncharged blocked octapeptide: pGlu‐Leu‐Asn‐Phe‐Thr‐Pro‐Ser‐Trp amide. The structure was confirmed by chemical synthesis. The synthetic peptide increased hemolymph lipids in the dragonfly and was active in another libellulid (Orthetrum julia‐falsum) as well, but to a lesser extent than the conspecific peptide Lia‐AKH, which is an isoform of the novel peptide differing by a Val (instead of Leu) at position 2. Since lipids are apparently used as substrate for muscle contraction during flight of Erythemis simplicicollis and the native peptide induces lipid mobilization, this novel peptide is denoted Ers‐AKH. Arch. Insect Biochem. Physiol. 40:99–106, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Adipokinetic hormone functions that are not associated with insect flight   总被引:1,自引:0,他引:1  
Abstract This review deals with some lesser known functions of adipokinetic hormones (AKHs), specifically those that are not associated directly with flight activity. The data summarized and discussed relate to AKHs in insects that have lost the ability to fly and use exclusively and/or mostly walking for their locomotion; and to activation of pathways that do not lead directly to production and subsequent rapid consumption of energy, but help the insect to combat stress situations. Emphasis is placed on AKH‐stimulated walking activities in Pyrrhocoris apterus, Gryllus bimaculatus, Periplaneta americana and Drosophila mellanogaster; diel fluctuations in AKH activities; the actions of AKH in alternative stress situations in which infection, toxins and other kinds of stressors interact; and the role of AKHs in anabolic processes and egg production. Possible mechanisms of action are proposed when justified by available knowledge.  相似文献   

10.
The corpora cardiaca of the African pyrgomorphid grasshoppers Phymateus morbillosus and Dictyophorus spumans contain three adipokinetic hormones (AKHs): besides two already known AKHs, Phm-AKH-I and Scg-AKH-II (G?de et al., 1996 [G?de, G., Kellner, R., Rinehart, K.L., 1996. Pyrgomorphid grasshoppers of the genus Phymateus contain species-specific decapeptides of the AKH/RPCH family regulating lipid-mobilisation during flight. Physiol. Entomol. 21, 193-202]), a new AKH-III, denoted Phm-AKH-III, pGlu-Ile-Asn-Phe-Thr-Pro-Trp-Trp-NH(2), has been characterised. This is only the second AKH-III identified so far, thus, only three insect species - all of them grasshoppers - contain three active AKHs. Phm-AKH-III differs from Lom-AKH-III from the migratory locust, Locusta migratoria, only in position 2: isoleucine is present instead of leucine. The structure of the Phm-AKH-III was confirmed by synthesis, subsequent mass determination and reversed-phase high-performance liquid chromatography. The synthetic peptide also induced hyperlipaemia in D. spumans and L. migratoria.  相似文献   

11.
Gäde G  Simek P  Marco HG 《Peptides》2007,28(3):594-601
The corpora cardiaca (CC) of two water bug species, the water boatman Corixa punctata and the saucer bug Ilyocoris cimicoides, contain a substance that cause hyperlipemia in the migratory locust. The primary sequence of one octapeptide belonging to the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family was deduced from the multiple MS(N) electrospray mass data of CC material from each species. Whereas the saucer bug contains the known octapeptide pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp amide, code-named Anaim-AKH, the water boatman has a novel peptide identified as pGlu-Leu/Ile-Asn-Phe-Ser-Pro-Ser-Trp amide, code-named Corpu-AKH. The ambiguity about the amino acid at position 2, i.e. Leu or Ile, in Corpu-AKH was solved by isolating the peptide in a single-step by reversed-phase HPLC and establishing co-elution with the synthetic peptide containing Leu at position 2. Functionally, the peptides regulate lipid mobilization, as evidenced by an adipokinetic effect after injecting synthetic Anaim-AKH and Corpu-AKH into the respective acceptor species. Swimming activity of I. cimicoides also causes hyperlipemia.  相似文献   

12.
Although dissimilar in their overall appearance and life habits, the praying mantises (Mantodea) and cockroaches (Blattodea, including their eusocial relatives, the termites [Isoptera]) are grouped within the clade Dictyoptera, based on – among other significant characteristics – the laying of eggs in a compound structure called an ootheca. The origin of the Dictyoptera and the currently recognized taxa within is, however, a controversial topic among entomologists. This has resulted from disparities in the divergence age estimates obtained from phylogenetic analyses based on molecular data together with the limited and controversial fossil evidence attributable to these groups. Here, we report two new oothecae ichnospecies found in a Carnian (237 to 227 mya. lowermost Upper Triassic) deposit from Argentina. Morphological comparisons and Scanning Electron Microscope and X-ray Energy Dispersive Spectroscopy analyses of fossil and extant oothecae of mantises and cockroaches were performed in an attempt to solve their systematic placement within Dictyoptera and fossil allies, such as †Alienoptera. In addition to being the earliest known record of oothecae, this discovery moves the origin of this specialized reproductive strategy back by 100 million years. As direct fossil evidence, these specimens provide an important calibration and reference point that can inform future research on the origins and timing of diversification of the Dictyoptera.  相似文献   

13.
Siegert KJ 《FEBS letters》1999,447(2-3):237-240
A neuropeptide from the migratory locust, Locusta migratoria, has been identified as a novel member of the family of adipokinetic hormones (AKHs). The peptide is probably synthesised in the brain because it is the first AKH found in the storage lobe, whilst the three 'classic' Locusta AKHs are present in the glandular lobe of the corpora cardiaca. In locusts, the peptide has no biological activity usually associated with AKHs. There is only 36-56% sequence identity with the three Lom-AKHs, but 78% identity with the Drosophila melanogaster AKH, Drm-HrTH. The new peptide is active in the American cockroach, Periplaneta americana, and was provisionally named 'L. migratoria hypertrehalosaemic hormone', Lom-HrTH; its biological role in locusts remains to be established. The high degree of identity with Drm-HrTH suggests that Lom-HrTH is an ancient molecule.  相似文献   

14.
Abstract.  Adipokinetic neuropeptides, from the corpora cardiaca of various species of the suborder Ensifera, encompassing members of all superfamilies (except the Gryllacridoidea), were isolated by liquid chromatography, and identified structurally by comparison of retention times and mass spectrometry data with respect to information from known members of this peptide family. Ensiferan species always contain only one adipokinetic hormone (AKH) peptide, as assessed for a few species by monitoring typical AKH mass peaks from a crude corpora cardiaca extract. This AKH is an octapeptide, and is either Scg-AKH-II (pGlu-Leu-Asn-Phe-Ser-Thr-Gly-Trp amide) which occurs in all Tettigoniidea (except Schizodactyloidea) and in Gryllotalpoidea, or Grb-AKH (pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp amide) which occurs in Grylloidea (except Gryllotalpoidea) and Schizodactyloidea. Using the structural information of these neuropeptides in conjunction with morpho-anatomical characters, these data are interpreted in a phylogenetic framework. The lack of a decapeptide and the presence of the octapeptide Scg-AKH-II are ancestral in Ensifera. The ancestral Scg-AKH-II twice underwent an independent and convergent modification to Grb-AKH.  相似文献   

15.
A new member of the AKH/RPCH family was isolated and identified from the corpora cardiaca of the firebug Pyrrhocoris apterus. The peptide was isolated in a single step by reversed phase HPLC and the structure deduced from the multiple MS (MS(N)) electrospray mass spectra and amino acid analysis as that of an octapeptide with the sequence pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-NH(2): this sequence was confirmed by synthesis. The synthetic peptide induced lipid mobilisation and stimulated locomotory activity in macropterous females. This peptide, designated as Pyrrhocoris apterus adipokinetic hormone (Pya-AKH), is the first identified adipokinetic hormone described in a representative species of the suborder Heteroptera.  相似文献   

16.
Kodrík D  Simek P  Lepsa L  Socha R 《Peptides》2002,23(3):585-587
A new member of the AKH/RPCH family was isolated from the corpora cardiaca of the firebug Pyrrhocoris apterus. It is the second adipokinetic peptide identified in this species. The peptide was characterized and its structure was deduced from the multiple MS(N) electrospray mass spectra as that of an octapeptide with the sequence pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-NH(2.) The peptide differs from the original P. apterus AKH (Pya-AKH) by one amino acid in position 3. Topical application and/or injection of the peptide induced lipid mobilization, but was inactive in mobilization of carbohydrates.  相似文献   

17.
A neuropeptide with adipokinetic activity in Locusta migratoria and the mantid Empusa pennata, and hypertrehalosaemic activity in Periplaneta americana, was isolated by reversed-phase high performance liquid chromatography from corpora cardiaca of the mantids E. pennata and Sphodromantis sp. After brief enzymatic digestion by 5-oxoprolylpeptidase the primary structure of the peptide of each species was determined by pulsed-liquid phase sequencing employing Edman degradation. The C-terminus of both peptides was blocked, as indicated by the lack of digestion with carboxypeptidase A. The peptides of both species were identical: a blocked, uncharged octapeptide with the sequence L-Glu-Val-Asn-Phe-Thr-Pro-Asn-Trp-NH2. The peptide is now called mantid adipokinetic hormone (Emp-AKH). The synthetic peptide was chromatographically indistinguishable from the natural compound and increased blood lipids in locusts and blood carbohydrates in cockroaches when administered in low doses. The structural features clearly define the peptide as a novel member of the large AKH/RPCH-family of peptides. Seven amino-acid residues are at identical positions in Emp-AKH when compared with the adipokinetic hormone of a dragonfly (Lia-AKH) and the hypertrehalosaemic hormone I from the American cockroach (Pea-CAH-I). Evolutionary relationships to other insect orders are discussed.  相似文献   

18.
Peptides of the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family were isolated and sequenced from the retrocerebral corpora cardiaca of four kissing bugs which are all vectors of the protozoan Trypanosoma cruzi responsible for Chagas’ disease. The sequence of three novel AKHs were deduced from the multiple MSN electrospray mass data: the octapeptide pGlu-Leu-Thr-Phe-Ser-Thr-Asp-Trp amide (denoted Rhopr-AKH) in Rhodnius prolixus and Panstrongylus megistus, the nonapeptide pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-Gly amide (denoted Triin-AKH) in Triatoma infestans and the decapeptide pGlu-Leu-Thr-Phe-Ser-Asp-Gly-Trp-Gly-Asn amide (denoted Dipma-AKH) in Dipetalogaster maxima. The sequences were confirmed by identical behavior of natural and synthetic forms in reversed-phase HPLC and by CID-MS mass spectra. Conspecific injections of a dose of 10 pmol of the respective synthetic peptides resulted in a small but significant increase of the lipid concentration in the hemolymph. These experiments suggest that AKHs in kissing bugs act to regulate lipid metabolism, possibly during dispersal flights which is one of the mechanisms whereby the insects reach new outbreak areas.  相似文献   

19.
The role of the adipokinetic hormone (AKH) in the control of protease, amylase and lipase activities is examined using the cockroach Periplaneta americana and the fruit fly Drosophila melanogaster as model species. The effects of Peram‐CAH‐I and ‐II on the activity of cockroach digestive enzymes in the gastric caeca and midgut are measured both in vivo and in vitro. The results show the activity of proteases, amylases and lipases in both parts of the gut: amylase activity is higher in the gastric caeca than in the midgut; lipase activity presents the opposite trend; and protease activity is similar in both organs. The applied hormones stimulate the activity of all digestive enzymes, although this stimulation is not uniform; AKHs affect enzymes selectively, and in some cases unequally, in the gastric caeca and midgut. No substantial differences between Peram‐CAH‐I and ‐II stimulation are recorded. The in vitro results demonstrate that AKH stimulates digestive enzyme activity directly. In agreement with the cockroach results, enzymatic activity in D. melanogaster larvae producing nonfunctional AKH is lower than that in the larvae with ectopically expressed Akh gene, where enzyme activity reaches or even exceeds that of the controls. Overall, the results demonstrate the active role of AKHs in the stimulation of digestive enzyme activity in insects.  相似文献   

20.
A novel member of the AKH/RPCH family of peptides has been identified from the corpus cardiacum of an, as yet, unidentified species of the newly discovered insect order Mantophasmatodea from Namibia. The primary sequence of the peptide, which is denoted Manto-CC, was deduced from multiple MS(N) electrospray mass data to be an octapeptide: pGlu-Val-Asn-Phe-Ser-Pro-Gly-Trp amide. Synthetic Manto-CC co-elutes on reversed-phase HPLC with the natural peptide from the gland of the insect. Interestingly, Manto-CC is structurally very closely related (only one point mutation) to the AKH/RPCH peptides previously identified in mostly more basal insect taxa (Odonata, Blattodea, and Ensifera) and in Crustacea, the sister group of insects, whereas larger structural differences occur with peptides from Mantodea and Phasmatodea, which are thought to be close relatives of Mantophasmatodea. Functionally, Manto-CC may be employed to activate glycogen phosphorylase to mobilize carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号