首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Heteromeric complexes of p24 proteins cycle between early compartments of the secretory pathway and are required for efficient protein sorting. Here we investigated the role of cytoplasmically exposed tail sequences on two p24 proteins, Emp24p and Erv25p, in directing their movement and subcellular location in yeast. Studies on a series of deletion and chimeric Emp24p-Erv25p proteins indicated that the tail sequences impart distinct functional properties that were partially redundant but not entirely interchangeable. Export of an Emp24p-Erv25p complex from the endoplasmic reticulum (ER) did not depend on two other associated p24 proteins, Erp1 and Erp2p. To examine interactions between the Emp24p and Erv25p tail sequences with the COPI and COPII coat proteins, binding experiments with immobilized tail peptides and coat proteins were performed. The Emp24p and Erv25p tail sequences bound the Sec13p/Sec31p subunit of the COPII coat (K(d) approximately 100 microm), and binding depended on a pair of aromatic residues found in both tail sequences. COPI subunits also bound to these Emp24p and Erv25p peptides; however, the Erv25p tail sequence, which contains a dilysine motif, bound COPI more efficiently. These results suggest that both the Emp24p and Erv25p cytoplasmic sequences contain a di-aromatic motif that binds subunits of the COPII coat and promotes export from the ER. The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER.  相似文献   

2.
Emp24p is a type I transmembrane protein that is involved in secretory protein transport from the endoplasmic reticulum (ER) to the Golgi complex. A yeast mutant that lacks Emp24p (emp24 delta) is viable, but periplasmic invertase and the glycosylphosphatidyl-inositol-anchored plasma membrane protein Gas1p are delivered to the Golgi apparatus with reduced kinetics, whereas transport of alpha-factor, acid phosphatase and two vacuolar proteins is unaffected. Oligomerization and protease digestion studies of invertase suggest that the selective transport phenotype observed in the emp24 delta mutant is not due to a defect in protein folding or oligomerization. Consistent with a role in ER to Golgi transport, Emp24p is a component of COPII-coated, ER-derived transport vesicles that are isolated from a reconstituted in vitro budding reaction. We propose that Emp24p is involved in the sorting and/or concentration of a subset of secretory proteins into ER-derived transport vesicles.  相似文献   

3.
Otte S  Barlowe C 《The EMBO journal》2002,21(22):6095-6104
Erv41p and Erv46p form an integral membrane protein complex that cycles between the endoplasmic reticulum (ER) and Golgi. Both proteins contain a large lumenal domain and short N- and C-terminal tail sequences exposed to the cytosol. The coat protein complex II (COPII) packages the Erv41p-Erv46p complex into ER-derived vesicles for delivery to the Golgi. We determined signals in the Erv41p-Erv46p complex that are required for COPII-dependent export from the ER. Mutants lacking the Erv41p or Erv46p C-terminus accumulated in the ER and were not packaged efficiently into vesicles. We identified an isoleucine-leucine sequence in the Erv41p tail that was required for COPII binding and inclusion of the complex into vesicles. This signal was sufficient for COPII binding but not for ER export. The Erv46p tail contains a phenylalanine-tyrosine sequence required together with the isoleucine-leucine signal in Erv41p for export of the complex. Surprisingly, Erv41p- Erv46p tail-swapped chimeras were not exported from the ER, indicating that signals in both the Erv41p and the Erv46p tail sequences are required in a specific orientation for efficient packaging of the Erv41p-Erv46p complex.  相似文献   

4.
Proteins contained on purified COPII vesicles were analyzed by matrix-assisted laser desorption ionization mass spectrometry combined with database searching. We identified four known vesicle proteins (Erv14p, Bet1p, Emp24p, and Erv25p) and an additional nine species (Yip3p, Rer1p, Erp1p, Erp2p, Erv29p, Yif1p, Erv41p, Erv46p, and Emp47p) that had not been localized to ER vesicles. Using antibodies, we demonstrate that these proteins are selectively and efficiently packaged into COPII vesicles. Three of the newly identified vesicle proteins (Erv29p, Erv41p, and Erv46p) represent uncharacterized integral membrane proteins that are conserved across species. Erv41p and Erv46p were further characterized. These proteins colocalized to ER and Golgi membranes and exist in a detergent-soluble complex that was isolated by immunoprecipitation. Yeast strains lacking Erv41p and/or Erv46p are viable but display cold sensitivity. The expression levels of Erv41p and Erv46p are interdependent such that Erv46p was reduced in an erv41Delta strain, and Erv41p was not detected in an erv46Delta strain. When the erv41Delta or ev46Delta alleles were combined with other mutations in the early secretory pathway, altered growth phenotypes were observed in some of the double mutant strains. A cell-free assay that reproduces transport between the ER and Golgi indicates that deletion of the Erv41p-Erv46p complex influences the membrane fusion stage of transport.  相似文献   

5.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

6.
In yeast, there are at least two vesicle populations upon ER (endoplasmic reticulum) exit, one containing Gap1p (general aminoacid permease) and a glycosylated alpha-factor, gpalphaF (glycosylated proalpha-factor), and the other containing GPI (glycosylphosphatidylinositol)-anchored proteins, Gas1p (glycophospholipid-anchored surface protein) and Yps1p. We attempted to identify sorting determinants for this protein sorting event in the ER. We found that mutant Gas1 proteins that lack a GPI anchor and/or S/T region (serine- and threonine-rich region), two common characteristic features conserved among yeast GPI-anchored proteins, were still sorted away from Gap1p-containing vesicles. Furthermore, a mutant glycosylated alpha-factor, gpalphaGPI, which contains both the GPI anchor and S/T region from Gas1p, still entered Gap1p-containing vesicles, demonstrating that these conserved characteristics do not prevent proteins from entering Gap1p-containing vesicles. gpalphaF showed severely reduced budding efficiency in the absence of its ER exit receptor Erv29p, and this residual budding product no longer entered Gap1p-containing vesicles. These results suggest that the interaction of gpalphaF with Erv29p is essential for sorting into Gap1p-containing vesicles. We compared the detergent solubility of Gas1p and the gpalphaGPI in the ER with that in ER-derived vesicles. Both GPI-anchored proteins similarly partitioned into the DRM (detergent-resistant membrane) in the ER. Based on the fact that they entered different ER-derived vesicles, we conclude that DRM partitioning of GPI-anchored proteins is not the dominant determinant of protein sorting upon ER exit. Interestingly, upon incorporation into the ER-derived vesicles, gpalphaGPI was no longer detergent-insoluble, in contrast with the persistent detergent insolubility of Gas1p in the ER-derived vesicles. We present different explanations for the different behaviours of GPI-anchored proteins in distinct ER-derived vesicle populations.  相似文献   

7.
Efficient export of secretory alkaline phosphatase (ALP) from the endoplasmic reticulum depends on the conserved transmembrane sorting adaptor Erv26p/Svp26p. In the present study we investigated the mechanism by which Erv26p couples pro-ALP to the coat protein complex II (COPII) export machinery. Site-specific mutations were introduced into Erv26p, and mutant proteins were assessed in cell-free assays that monitor interactions with pro-ALP cargo and packaging into COPII vesicles. Mutations in the second and third loop domains of Erv26p inhibited interaction with pro-ALP, whereas mutations in the C-terminal tail sequence influenced incorporation into COPII vesicles and subcellular distribution. Interestingly mutations in the second loop domain also influenced Erv26p homodimer associations. Finally we demonstrated that Ktr3p, a cis-Golgi-localized mannosyltransferase, also relies on Erv26p for efficient COPII-dependent export from the endoplasmic reticulum. These findings demonstrate that Erv26p acts as a protein sorting adaptor for a variety of Type II transmembrane cargo proteins and requires domain-specific interactions with both cargo and coat subunits to promote efficient secretory protein transport.Anterograde transport in the eukaryotic secretory pathway is initiated by the formation of COPII2-coated vesicles that emerge from transitional ER sites. The COPII coat, which consists of the small GTPase Sar1p, Sec23/24 complex, and Sec13/31 complex, selects vesicle cargo through recognition of export signals and forms ER-derived vesicles through assembly of an outer layer cage structure (1, 2). Cytoplasmically exposed ER export signals have been identified in secretory cargo including the C-terminal dihydrophic and diacidic motifs (3, 4). Structural studies indicate that the Sec24p subunit of the COPII coat contains distinct binding sites for some of the molecularly defined export signals (5, 6). Thus a cycle of cargo-coat interactions regulated by the Sar1p GTPase directs anterograde movement of secretory proteins into ER-derived transport vesicles (7).Although many secretory proteins contain known export signals that interact directly with COPII subunits, the diverse array of secretory cargo that depends on this export route requires additional machinery for efficient collection of all cargo into COPII vesicles (1). For instance certain soluble secretory proteins as well as transmembrane cargo require protein sorting adaptors for efficient ER export. These membrane-spanning adaptors, or sorting receptors, interact directly with secretory cargo and with coat subunits to efficiently couple cargo to the COPII budding machinery. For example, ERGIC-53 acts as a protein sorting adaptor for several glycoproteins and has a large N-terminal lumenal domain that interacts with secretory proteins including blood coagulation factors, cathepsins, and α1-antitrypsin (810). The cytoplasmic C-terminal tail of ERGIC-53 contains a diphenylalanine export signal that is necessary for COPII export as well as a dilysine motif required for COPI-dependent retrieval to the ER (11). Additional ER vesicle proteins identified in yeast have been shown to interact with the COPII coat as well as specific secretory proteins (12). For example Erv29p acts as a protein sorting adaptor for the soluble secretory proteins glyco-pro-α-factor and carboxypeptidase Y (13). Erv29p also contains COPII and COPI sorting signals that shuttle the protein between ER and Golgi compartments. More recently Erv26p was identified as a cargo receptor that escorts the pro-form of secretory alkaline phosphatase (ALP) into COPII-coated vesicles (14).Although COPII sorting receptors have been identified, the molecular mechanisms by which these receptors link cargo to coat remain poorly understood. Moreover it is not clear how cargo binding is regulated to promote interaction in the ER and then trigger dissociation in the Golgi complex. We have shown previously that Erv26p binds to pro-ALP and is required for efficient export of this secretory protein from the ER (14). Therefore specific lumenal regions of Erv26p are proposed to interact with pro-ALP, whereas cytosolically exposed sorting signals are presumably recognized and bound by coat subunits. To gain insight on the molecular contacts required for Erv26p sorting function, we undertook a systematic mutational analysis of this multispanning membrane protein. After generating a series of Erv26p mutants, we observed that mutation of specific residues in the third loop domain affect pro-ALP interaction and that residues in the C-terminal cytosolic tail are required for COPII and COPI transport. Finally mutation of residues in the second loop domain influenced Erv26p homodimer formation and sorting activity.  相似文献   

8.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

9.
The p24 proteins are transmembrane proteins of the endomembrane system that play a poorly defined role in vesicle traffic between the endoplasmic reticulum and the Golgi apparatus. Various lines of evidence indicate that p24 proteins fall into four subfamilies (alpha, beta, gamma, and delta) and that tetramers are assembled containing one representative from each subfamily; however, the nature of the protein-protein interactions within these hetero-oligomers is unknown. We have identified a lumenal segment of yeast p24beta (Emp24p) that is necessary for its assembly into p24 complexes. Replacement of 52 C-terminal residues of Emp24p with the corresponding sequence from Erv25p (p24delta) generates a chimeric protein able to replace Emp24p in p24 complexes that retain partial function in vivo, ruling out a role for the transmembrane and cytosolic domains in specifying p24 interactions. Substitution of a further 50 residues, encompassing a heptad repeat region, abolishes the ability of the chimera to replace Emp24p but instead creates a protein that resembles its Erv25p parent in its requirement for stabilization by Emp24p. These data point to a role for coiled-coil interactions in directing subfamily-specific assembly of p24 oligomers that project into the lumen of transport vesicles, where they may act to exclude secretory cargo from coat protein complex type I-coated retrograde transport vesicles.  相似文献   

10.
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and dependent on the expression level of Emp47p. Emp46p binding to Emp47p occurs in the ER through the coiled-coil region in the luminal domains of both Emp47p and Emp46p, and dissociation occurs in the Golgi. Further, this coiled-coil region is also required for Emp47p to form an oligomeric complex of itself in the ER, which is essential for exit of Emp47p from the ER. Our results suggest that Emp47p is a receptor protein for Emp46p that allows for the selective transport of this protein, and this event involves receptor oligomerization.  相似文献   

11.
Six new members of the yeast p24 family have been identified and characterized. These six genes, named ERP1-ERP6 (for Emp24p- and Erv25p-related proteins) are not essential, but deletion of ERP1 or ERP2 causes defects in the transport of Gas1p, in the retention of BiP, and deletion of ERP1 results in the suppression of a temperature-sensitive mutation in SEC13 encoding a COPII vesicle coat protein. These phenotypes are similar to those caused by deletion of EMP24 or ERV25, two previously identified genes that encode related p24 proteins. Genetic and biochemical studies demonstrate that Erp1p and Erp2p function in a heteromeric complex with Emp24p and Erv25p.  相似文献   

12.
Active sorting at the endoplasmic reticulum (ER) drives efficient export of fully folded secretory proteins into coat protein complex II (COPII) vesicles, whereas ER-resident and misfolded proteins are retained and/or degraded. A number of secretory proteins depend upon polytopic cargo receptors for linkage to the COPII coat and ER export. However, the mechanism by which cargo receptors recognize transport-competent cargo is poorly understood. Here we examine the sorting determinants required for export of yeast alkaline phosphatase (ALP) by its cargo receptor Erv26p. Analyses of ALP chimeras and mutants indicated that Erv26p recognizes sorting information in the lumenal domain of ALP. This lumenal domain sorting signal must be positioned near the inner leaflet of the ER membrane for Erv26p-dependent export. Moreover, only assembled ALP dimers were efficiently recognized by Erv26p while an ALP mutant blocked in dimer assembly failed to exit the ER and was subjected to ER-associated degradation. These results further refine sorting information for ER export of ALP and show that recognition of folded cargo by export receptors contributes to strict ER quality control.  相似文献   

13.
Export of many secretory proteins from the endoplasmic reticulum (ER) relies on signal-mediated sorting into ER-derived transport vesicles. Recent work on the coat protein complex II (COPII) provides new insight into the mechanisms and signals that govern this selective export process. Conserved di-acidic and di-hydrophobic motifs found in specific transmembrane cargo proteins are required for their selection into COPII-coated vesicles. These signaling elements are cytoplasmically exposed and recognized by subunits of the COPII coat. Certain soluble cargo molecules depend on receptor-like proteins for efficient ER export, although signals that direct soluble cargo into ER-derived vesicles are less defined.  相似文献   

14.
COPII-coated ER-derived transport vesicles from Saccharomyces cerevisiae contain a distinct set of membrane-bound polypeptides. One of these polypeptides, termed Erv14p (ER–vesicle protein of 14 kD), corresponds to an open reading frame on yeast chromosome VII that is predicted to encode an integral membrane protein and shares sequence identity with the Drosophila cornichon gene product. Experiments with an epitope-tagged version of Erv14p indicate that this protein localizes to the ER and is selectively packaged into COPII-coated vesicles. Haploid cells that lack Erv14p are viable but display a modest defect in bud site selection because a transmembrane secretory protein, Axl2p, is not efficiently delivered to the cell surface. Axl2p is required for selection of axial growth sites and normally localizes to nascent bud tips or the mother bud neck. In erv14Δ strains, Axl2p accumulates in the ER while other secretory proteins are transported at wild-type rates. We propose that Erv14p is required for the export of specific secretory cargo from the ER. The polarity defect of erv14Δ yeast cells is reminiscent of cornichon mutants, in which egg chambers fail to establish proper asymmetry during early stages of oogenesis. These results suggest an unforeseen conservation in mechanisms producing cell polarity shared between yeast and Drosophila.  相似文献   

15.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

16.
Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are introduced into this loop, an Erv14p-Axl2p complex accumulates in the endoplasmic reticulum, suggesting that Erv14p links Axl2p to the COPII coat. Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo.  相似文献   

17.
Inositol starvation of auxotrophic yeast interrupts glycolipid biosynthesis and prevents lipid modification of a normally glycosyl phosphatidylinositol (GPI)-linked protein, Gas1p. The unanchored Gas1p precursor undergoes progressive modification in the endoplasmic reticulum (ER), but is not modified by Golgi-specific glycosylation. Starvation-induced defects in anchor assembly and protein processing are rapid, and occur without altered maturation of other proteins. Cells remain competent to manufacture anchor components and to process Gas1p efficiently once inositol is restored. Newly synthesized Gas1p is packaged into vesicles formed in vitro from perforated yeast spheroplasts incubated with either yeast cytosol or the purified Sec proteins (COP II) required for vesicle budding from the ER. In vitro synthesized vesicles produced by inositol-starved membranes do not contain detectable Gas1p. These studies demonstrate that COP II components fulfill the soluble protein requirements for packaging a GPI-anchored protein into ER-derived transport vesicles. However, GPI anchor attachment is required for this packaging to occur.  相似文献   

18.
Otte S  Barlowe C 《Nature cell biology》2004,6(12):1189-1194
Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-alpha-factor (gpalphaf), the precursor of alpha-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpalphaf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.  相似文献   

19.
Assembly of cognate SNARE proteins into SNARE complexes is required for many intracellular membrane fusion reactions. However, the mechanisms that govern SNARE complex assembly and disassembly during fusion are not well understood. We have devised a new in vitro cross-linking assay to monitor SNARE complex assembly during fusion of endoplasmic reticulum (ER)-derived vesicles with Golgi-acceptor membranes. In Saccharomyces cerevisiae, anterograde ER-Golgi transport requires four SNARE proteins: Sec22p, Bos1p, Bet1p, and Sed5p. After tethering of ER-derived vesicles to Golgi-acceptor membranes, SNARE proteins are thought to assemble into a four-helix coiled-coil bundle analogous to the structurally characterized neuronal and endosomal SNARE complexes. Molecular modeling was used to generate a structure of the four-helix ER-Golgi SNARE complex. Based on this structure, cysteine residues were introduced into adjacent SNARE proteins such that disulfide bonds would form if assembled into a SNARE complex. Our initial studies focused on disulfide bond formation between the SNARE motifs of Bet1p and Sec22p. Expression of SNARE cysteine derivatives in the same strain produced a cross-linked heterodimer of Bet1p and Sec22p under oxidizing conditions. Moreover, this Bet1p-Sec22p heterodimer formed during in vitro transport reactions when ER-derived vesicles containing the Bet1p derivative fused with Golgi membranes containing the Sec22p derivative. Using this disulfide cross-linking assay, we show that inhibition of transport with anti-Sly1p antibodies blocked formation of the Bet1p-Sec22p heterodimer. In contrast, chelation of divalent cations did not inhibit formation of the Bet1p-Sec22p heterodimer during in vitro transport but potently inhibited Golgi-specific carbohydrate modification of glyco-pro-alpha factor. This data suggests that Ca(2+) is not directly required for membrane fusion between ER-derived vesicles and Golgi-acceptor membranes.  相似文献   

20.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号