首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Tao L  English AM 《Biochemistry》2003,42(11):3326-3334
Mass spectrometry and UV-vis absorption results support a mechanism for NO donation by S-nitrosoglutathione (GSNO) to recombinant human brain calbindin D(28K) (rHCaBP) that requires the presence of trace copper, added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO(4). The extent of copper-catalyzed rHCaBP S-nitrosation depends on the ratio of protein to GSNO and on the reaction time, and NO-transfer is prevented when copper chelators are present. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation, and the mechanism of CuZnSOD-catalyzed S-nitrosation involves reduction of the active-site Cu(II) by a number of the five free thiols in rHCaBP, giving rise to thiyl radicals. The Cu(I)ZnSOD formed catalyzes the reductive cleavage of GSNO present in solution to give GSH and release NO. rHCaBP thiyl radicals react with NO to yield the S-nitrosoprotein. Cu(II)ZnSOD is also reduced by GSH in a concentration-dependent manner up to 5 mM but not at higher GSH concentrations. However, unlike the rHCaBP thiyl radicals, GS(*) radicals dimerize to GSSG faster than their reaction with NO. The data presented here provide a biologically relevant mechanism for protein S-nitrosation by small S-nitrosothiols. S-nitrosation is rapidly gaining recognition as a major form of protein posttranslational modification, and the efficient S-nitrosation of CaBP by CuZnSOD/GSNO is speculated to be of neurochemical importance given that CaBP and CuZnSOD are abundant in neurons.  相似文献   

2.
The Cu,Zn-superoxide dismutase (SOD1) has been reported to exert an S-nitrosylated glutathione (GSNO) denitrosylase activity that was augmented by a familial amyotrophic lateral sclerosis (FALS)-associated mutation in this enzyme. This putative enzymatic activity as well as the spontaneous decomposition of GSNO has been reexamined. The spontaneous decomposition of GSNO exhibited several peculiarities, such as a lag phase followed by an accelerating rate plus a marked dependence on GSNO concentration, suggestive of autocatalysis, and a greater rate in polypropylene than in glass vessels. Dimedone caused a rapid increase in absorbance likely due to reaction with GSNO, followed by a slower increase possibly due to reaction with an intermediate such as glutathione sulfenic acid. SOD1 weakly increased the rate of decomposition of GSNO, but did so only when GSH was present; and FALS-associated mutant forms of SOD1 were not more active in this regard than was the wild type. Decomposed GSNO, when added to fresh GSNO, hastened its decomposition, in accord with autocatalysis, and when added to GSH, generated GSNO in accord with the presence of nitrite. A mechanism is proposed that is in accord with these observations.  相似文献   

3.
Caulobacter crescentus is one of a small number of bacterial species that contain a periplasmic copper-zinc superoxide dismutase (CuZnSOD). A C. crescentus mutant, with the CuZnSOD gene interrupted by a promoterless cat gene, was constructed and characterized to analyze CuZnSOD function. Periplasmic SOD does not protect against oxyradical damage in the cytosol or play a major role in maintaining the integrity of the cell envelope. Studies of the effect of sodium citrate on plating efficiency suggest that CuZnSOD protects a periplasmic or membrane function(s) requiring magnesium or calcium.  相似文献   

4.
The procedures for isolation and purification of Cu/Zn superoxide dismutase (SOD) from small amounts of rat liver at different stages of Pliss lymphosarcoma growth were developed. Two stages of tumour growth were distinguished. At the first stage (4-5th day after reinoculation) the intensity of optical (680 nm) and EPR spectra of SOD was decreased, on the average, to 30%, while at the second stage--by 40% at 680 nm and by 32%, at 260 nm. The intensity of the EPR spectra was also diminished by 40% as compared to the control. It was assumed that at initial stages of tumour growth the decrease of the SOD activity is mainly due to the reduction of enzyme Cu, while at the second stage--to the decrease of the protein content. In all probability, the observed changes are induced by the activation of lipid peroxidation involving active O2 species. The second stage is associated with the superoxide-induced impairment of the function of nucleic acids involved in protein biosynthesis.  相似文献   

5.
In light-grown callus obtained from M. crystallinum hypocotyls, three classes of superoxide dismutase (SOD): Mn-, Fe- and Cu/ZnSOD were identified. Callus cultured on a medium containing 0.4 M NaCl showed an increase in FeSOD activity on day 4 of the experiment. In contrast, Cu/ZnSOD activity was higher over 16 days of the experiment. Salinity stress induces oxidative stress mainly for the cytosolic SOD form (Cu/ZnSOD). After 16 days of callus culture on salt-containing medium, diurnal malate oscillations, and an increase in NADP-malic enzyme activity were noticed. These results strongly suggest that C3-CAM transition can also be expressed at the cellular level. Therefore, callus tissue could be a useful model, similar to a whole plant, for investigation of mechanisms of stress responses in M. crystallinum.  相似文献   

6.
The effect of Al on superoxide dismutase (SOD) and on other antioxygenic enzymes: horseradish peroxidase, catalase, and glutathione peroxidase, has been investigated in vitro. In the case of SOD, the effect of metal chelators (EDTA and deferoxamine) and a possible synergistic effect with iron salts have also been tested using the pyrogallol assay. There is no significant inhibitory effect of Al on the activity of any of the above-mentioned enzymes. Noticeable increases in SOD activity were observed when metal chelators were added to the medium, but not when high concentrations of Al were present too, in the case of deferoxamine (DFO). The former fact seems to be a consequence of the chelation of transition metal ions that catalyze pyrogallol autoxidation by a mechanism not inhibitable by SOD, interfering in its action, which may account for part of the DFO antioxidant effect observed in vivo. The latter phenomenon could be owing to a saturation of the chelating capacity of DFO by an excess of Al present in the medium, which should bring the system back to the interfering conditions explained above. It can be concluded that Al, either in the presence or in the absence of iron salts, does not inhibit SOD activity in vitro. Moreover, no significant binding of Al to SOD was demonstrated, and the amounts of its metal constituents, Cu and Zn, were not affected by preincubation of the enzyme with Al. The effect of the different compounds tested on the rate of autoxidation of the indicating scavenger, pyrogallol, and a suitable hypothesis on their role in the oxidation process are also discussed.  相似文献   

7.
We investigated the effect of salt stress on enzymatic activity of superoxide dismutase (SOD) isozymes in shoot and root tissues of salt tolerant and sensitive wheat (Triticum aestivum L. and Triticum durum Defs.) cultivars. Ten day old seedlings were subjected to 0.7 M NaCl stress for 3 and 5 days. Seedlings treated in the same manner without salt stress served as controls. Activity of SOD isozymes in root and shoot extracts was determined by activity staining of native polyacrylamide gels. In both shoot and root extracts of examined cultivars two isozymes of SOD, namely MnSOD and Cu/ZnSOD were identified. Cu/ZnSOD activity comprised 90 % of total SOD activity in both root and shoot tissues. Salt stress caused 1–1.5 fold increase in MnSOD activity of shoots in tolerant cultivars when compared with non-stressed controls. Under stress conditions, compared to controls all cultivars exhibited reduced MnSOD activity in root tissues. Cu/ZnSOD activity, on the other hand, was remarkably enhanced (3–4 fold) in root extracts of the tolerant cultivars, whereas it was reduced in the sensitive ones.  相似文献   

8.
S-Nitrosoglutathione (GSNO), a physiologically relevant nitric oxide ((*)NO) donor, exhibits antioxidant, anti-ischemic, and antiplatelet properties. The exact mechanism of (*)NO release from GSNO in biological systems has not been determined. Both copper ions and copper-containing enzymes have been shown to catalyze (*)NO release from GSNO. In this study we observed that copper-zinc superoxide dismutase (Cu,ZnSOD) in the presence of H(2)O(2) caused a rapid decomposition of GSNO, forming oxidized glutathione (GSSG) and (*)NO. The cupric ions (Cu(2+)) released from Cu,ZnSOD were bound to the glutamate moiety of GSNO, yielding a 2:1 (GSNO)(2)Cu(2+) complex. Strong chelators of cupric ions, such as histidine and diethylenetriaminepentaacetic acid, inhibited the formation of (GSNO)(2)Cu(2+) complex, GSSG, and (*)NO. GSSG alone inhibited Cu(2+)-induced decomposition of GSNO. This effect is attributed to complexation of copper by GSSG. We conclude that binding of copper to GSNO is obligatory for (*)NO release from GSNO; however, the rate of this reaction was considerably slowed due to binding of Cu(2+) by GSSG. The glutamate moiety in GSNO and GSSG controls copper-catalyzed (*)NO release from GSNO. Cu,ZnSOD and H(2)O(2) enhanced peroxidation of unsaturated lipid that was inhibited by GSNO. The antioxidant function of GSNO is related to the sequestering of copper by GSNO and its ability to slowly release (*)NO. Implications of these findings are discussed in relation to GSNO-induced cardioprotection and to neuropathological processes.  相似文献   

9.
In order to evaluate the toxicity of multi‐walled carbon nanotubes (MWCNTs‐COOH) at a molecular level, the effect of MWCNTs‐COOH on antioxidant enzyme copper–zinc superoxide dismutase (Cu/ZnSOD) was investigated using fluorescence spectroscopy, UV/vis absorption spectroscopy, circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). By deducting the inner filter effect (IFE), the fluorescence emission spectra and synchronous fluorescence spectra indicated that there were interactions between MWCNTs‐COOH and Cu/ZnSOD. Moreover, the microenvironment of the amino acid residues in the enzyme was changed slightly. The UV/vis absorption and CD spectroscopic results showed appreciable conformational changes in Cu/ZnSOD. However, the results of a Cu/ZnSOD activity determination did not show any significant difference. In other words, MWCNTs‐COOH has no significant effect on enzyme activity. The ITC results showed that the binding of MWCNTs‐COOH to Cu/ZnSOD was a weak endothermic process, indicating that the predominant force of the binding was hydrophobic interaction. Moreover, it was essential to consider the IFE in fluorescence assays, which might affect the accuracy and precision of the results. The above results are helpful in evaluating the oxidative stress induced by MWCNTs‐COOH in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The rate of O2 radical generation in microsomal membranes (VO2), the activity of cytosol superoxide dismutase (Cu, ZnSOD) and mitochondrial superoxide dismutase (MnSOD), and the activity of xanthine oxidizing system (XO) after a two-hour ischemia following a 24-hour reoxygenation of the rat liver were investigated. The high value of VO2, as compared to Cu, ZnSOD activity, may result in regulation disorders in O2-SOD system during ischemia. During reoxygenation, xanthine oxidizing system in combination with lowered Cu, ZnSOD activity may substantially contribute to the disturbance.  相似文献   

11.
Reversal of the superoxide dismutase (SOD) reaction was measured in terms of the reduction of tetranitromethane (TNM) by O2-. Cu,ZnSOD caused a biphasic reduction of TNM by H2O2. The rapid initial phase was stoichiometric with the enzyme and was followed by a slower catalytic phase that was oxygen dependent and was augmented by HCO3-. The reaction scheme explaining this behavior is presented and a rate constant for the reduction of O2 by the cuprous enzyme is estimated. This rate constant is so low that it precludes significant O2- production by the reduced enzyme under the conditions explored.  相似文献   

12.
Mutations in copper-zinc superoxide dismutase (CuZnSOD) cause 25% of familial amyotrophic lateral sclerosis (FALS) cases. This paper examines one such mutant, H46R, which has no superoxide dismutase activity yet presumably retains the gain-of-function activity that leads to disease. We demonstrate that Cu(2+) does not bind to the copper-specific catalytic site of H46R CuZnSOD and that Cu(2+) competes with other metals for the zinc binding site. Most importantly, Cu(2+) was found to bind strongly to a surface residue near the dimer interface of H46R CuZnSOD. Cysteine was identified as the new binding site on the basis of multiple criteria including UV-vis spectroscopy, RR spectroscopy, and chemical derivatization. Cysteine 111 was pinpointed as the position of the reactive ligand by tryptic digestion of the modified protein and by mutational analysis. This solvent-exposed residue may play a role in the toxicity of this and other FALS CuZnSOD mutations. Furthermore, we propose that the two cysteine 111 residues, found on opposing subunits of the same dimeric enzyme, may provide a docking location for initial metal insertion during biosynthesis of wild-type CuZnSOD in vivo.  相似文献   

13.
14.
Regulation of superoxide dismutase expression by copper availability   总被引:3,自引:0,他引:3  
The most abundant copper proteins in green tissues are plastocyanin (PC) in thylakoids and copper/zinc superoxide dismutase (Cu/ZnSOD) of which the major isoforms are found in the cytosol and in the chloroplast stroma. An iron superoxide dismutase (FeSOD) can also be found in the stroma. The expression of superoxide dismutases (SODs) has been studied mainly in the context of abiotic stress. However, the availability of metal cofactors may also determine SOD expression patterns. Indeed, in Arabidopsis thaliana , Cu/ZnSOD enzymes were only expressed when copper was sufficient. This observation was made for plants grown on sucrose-containing tissue culture media and regulation of SOD expression by copper has not been tested for other species. To investigate the effect of copper on SOD expression, we used a hydroponic set-up in which plants grew without any evident stress symptoms. We observed that A. thaliana , Brassica juncea , Lycopersicum lycopersicum , Zea mays and Oryza sativa , downregulated Cu/ZnSOD in response to copper limitation. Under this condition, FeSOD expression was upregulated to replace Cu/ZnSOD in the stroma in all plants except Z. mays , in which FeSOD was not detectable. Copper limitation did not affect PC accumulation in any of the plants except Z. mays . Comparisons of leaf copper contents and SOD expression suggest that Cu/ZnSOD and FeSOD expression levels are good indicators of impending copper deficiency. Plants that downregulate Cu/ZnSOD and upregulate FeSOD under copper limitation can maintain superoxide scavenging and save copper for use in PC, which is essential for photosynthesis.  相似文献   

15.
Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent pathway), and the other works independently of CCS (referred to as CCS-independent pathway). In our previous study, we suggest an unidentified factor will work with glutathione (GSH) for CSD activation in the absence of the CCS. Here, two models of the CCS-independent mechanism are proposed. The role of the unidentified factor may work as a scaffold protein, which provides a platform for the CSD protein and Cu-GSH to interact, or as a Cu carrier, which itself can bind Cu and interact with CSD proteins. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unidentified factor to access.  相似文献   

16.
17.
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme has been isolated, purified and partially characterized from chicken liver. The following steps were carried out in order to purify chicken liver SOD. Initially, the liver was homogenized and hemoglobin was removed. Subsequently protein precipitation was effected with (NH(4))(2)SO(4), methanol, (NH(4))(2)SO(4)-methanol and polyethylene glycol methods. The product from polyethylene glycol-3350 precipitation was found to have the highest SOD activity. Polyethylene glycol was removed by chromatography using a PD-10 column. After passing through an ultrafilter, the superoxide dismutase was fractionated by DEAE-ion chromatography and then Sephadex G-75 gel filtration chromatography. During this purification procedure, a specific activity of 4818.2 IU/mg was reached, corresponding to 285.8-fold purification. The purified enzyme, which was characterized as cyanide-sensitive SOD, contained two subunits having Cu and Zn elements with a molecular weight of 16000+/-500 for each. The optimum pH of purified CuZnSOD was determined to be 8.9. The enzyme was found to have good pH stability in the pH range 6.0-7.5 at 25 degrees C over a 2-h incubation period and displayed good thermal stability up to 45 degrees C at pH 7.4 over a 1-h incubation period. The SOD enzyme was not inhibited by DTT and beta-mercaptoethanol, but inhibited by CN(-) and H(2)O(2). In the presence of 2 mM iodoacetamide, the enzyme showed an approximately 40% activity loss. Finally, the inhibitory effect of ionic strength on SOD was also investigated.  相似文献   

18.
A novel Cu/Zn-containing superoxide dismutase (SOD) was isolated from the fungal strain Humicola lutea 103. Previously, a protective effect of this enzyme (HLSOD) against tumor growth and also superoxide production in Graffi tumor-bearing hamsters (TBH) were established. The aim of the present study was to investigate the effect of HLSOD on the activity of endogenous SOD and catalase in the cells from TBH during tumor progression. Our results point out that transplantation of Graffi tumor causes a significant decrease in SOD activity in the cells from liver of the hosts (from 35 to 59% compared to the control). In the tumor cells relatively low levels of SOD (about 7 U mg protein(-1)) were found, and Cu/ZnSOD was the main isoenzyme in total SOD activity. Tumor growth resulted in a reduction of catalase activity, which correlated with the process of tumor progression. A single dose (65 U) treatment with HLSOD caused an increase in endogenous SOD and catalase activity in healthy animals and resulted in restoration of the antioxidant ability in liver cells of the hosts at the early stage of tumor progression. The results show the possible participation of HLSOD in the host oxidant-antioxidant balance, which is probably one of the factors of its immunoprotective action established earlier.  相似文献   

19.
We have studied the effects of overexpression of superoxide dismutase (SOD), a tumor suppressor protein that dismutes superoxide radical to H2O2, on breast cancer cell growth in vitro and xenograft growth in vivo. No previous work has directly compared the growth-suppressive effects of manganese SOD (MnSOD) and copper-zinc SOD (CuZnSOD). We hypothesized that either adenoviral MnSOD (AdMnSOD) or adenoviral CuZnSOD (AdCuZnSOD) gene therapy would suppress the growth of human breast cancer cells. After determining the antioxidant profiles of three human breast cell lines, MCF 10A, MDA-MB231, and MCF-7, we measured the effects of MnSOD or CuZnSOD overexpression on cell growth and survival in vitro and in vivo. Results demonstrated that infection with AdMnSOD or AdCuZnSOD increased the activity of the respective enzyme in all three cell lines. In vitro, overexpression of MnSOD or CuZnSOD decreased not only cell growth but also clonogenic survival in a dose- and transgene-dependent manner. In vivo, treatment of tumors with AdMnSOD or AdCuZnSOD decreased xenograft growth compared to controls. The first direct comparison of MnSOD to CuZnSOD overexpression indicated that CuZnSOD and MnSOD were similarly effective at suppressing cancer cell growth.  相似文献   

20.
Reactive oxygen species-scavenging enzyme Cu/Zn superoxide dismutase (SOD) regulated by peroxisome proliferator-activated receptors (PPARs) plays an important role in vascular responsiveness. However, it remains unknown whether statin restores vascular dysfunction through the activation of reactive oxygen species-scavenging enzymes in vivo. We hypothesized that pitavastatin restores vascular function by modulating oxidative stress through the activation of Cu/ZnSOD and PPAR-gamma in hypercholesterolemia. New Zealand White male rabbits were fed either normal chow or a 1% cholesterol (CHO) diet for 14 wk. After the first 7 wk, the CHO-fed rabbits were further divided into three groups: those fed with CHO feed only (HC), those additionally given pitavastatin, and those additionally given an antioxidant, probucol. The extent of atherosclerosis was assessed by examining aortic stiffness. When compared with the HC group, both the pitavastatin and probucol groups showed improved aortic stiffness by reducing aortic levels of reactive oxidative stress, nitrotyrosine, and collagen, without affecting serum cholesterol or blood pressure levels. Pitavastatin restored both Cu/ZnSOD activity (P < 0.005) and PPAR-gamma expression and activity (P < 0.01) and inhibited NAD(P)H oxidase activity (P < 0.0001) in the aorta, whereas probucol inhibited NAD(P)H oxidase activity more than did pitavastatin (P < 0.0005) without affecting Cu/ZnSOD activity or PPAR-gamma expression and activity. Importantly, Cu/ZnSOD activity was positively correlated with the PPAR-gamma activity in the aorta (P < 0.005), both of which were negatively correlated with aortic stiffness (P < 0.05). Vascular Cu/ZnSOD and PPAR-gamma may play a crucial role in the antiatherogenic effects of pitavastatin in hypercholesterolemia in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号