首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-superoxide dismutase (FeSOD) and copper/zinc-superoxide dismutase (Cu/ZnSOD) are evolutionarily conserved proteins in higher plant chloroplasts. These enzymes are responsible for the efficient removal of the superoxide formed during photosynthetic electron transport and function in reactive oxygen species metabolism. The availability of copper is a major determinant of Cu/ZnSOD and FeSOD expression. Analysis of the phenotypes of plants that over-express superoxide dismutases in chloroplasts has given support for the proposed roles of these enzymes in reactive oxygen species scavenging. However, over-production of chloroplast superoxide dismutase gives only limited protection to environmental stress and does not result in greatly improved whole plant performance. Surprisingly, plant lines that lack the most abundant Cu/ZnSOD or FeSOD activities perform as well as the wild-type under most conditions tested, indicating that these superoxide dismutases are not limiting to photoprotection or the prevention of oxidative damage. In contrast, a strong defect in chloroplast gene expression and development was seen in plants that lack the two minor FeSOD isoforms, which are expressed predominantly in seedlings and that associate closely with the chloroplast genome. These findings implicate reactive oxygen species metabolism in signaling and emphasize the critical role of sub-cellular superoxide dismutase location. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

2.
3.
In plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.  相似文献   

4.
The effect of Mn deficiency on plant growth and activities ofsuperoxide dismutase (SOD) was studied in hydroponically-grownseedlings of transgenic tobacco (Nicotiana tabacum L.) engineeredto overexpress FeSOD in chloroplasts or MnSOD in chloroplastsor mitochondria. In comparison to the non-transgenic parentalline, the activity of MnSOD in the lines overproducing MnSODwas 1.6-fold greater, and the activity of FeSOD in the FeSOD-overproducinglines was 3.2-fold greater, regardless of the Mn treatment (deficientor sufficient). The MnSOD activities decreased due to Mn deficiency,while activities of FeSOD and Cu/ZnSOD remained unaffected 25d after transplanting (DAT). With an increased duration of theMn deficiency stress (45 DAT), FeSOD activity decreased, andthat of MnSOD continued to decrease, while Cu/ZnSOD activitysimultaneously increased. Under Mn sufficiency, non-transgenicparental plants had greater shoot biomass than the transgenics;however, when subjected to Mn deficiency stress, non-transgenicparents suffered a proportionally greater growth reduction thantransgenic lines. Thus, overproduction of MnSOD in chloroplastsmay provide protection from oxidative stress caused by Mn deficiency.Copyright 1999 Annals of Botany Company Manganese deficiency, Nicotiana tabacum, superoxide dismutase (SOD), transgenic tobacco.  相似文献   

5.
Superoxide dismutase (SOD) in-gel activity assay with selective inhibitors (KCN and H2O2) is one of the most commonly used methods for identification of SOD isoform types, i.e., FeSOD, MnSOD or Cu/ZnSOD, and evaluation of oxidative stress response in plants. However, there are potential pitfalls that surround this assay, such as problem to detect isoforms with low activity, comigration of SOD isoforms or application of inappropriate inhibitor concentration. We propose an improved method based on the combination of in-gel analysis of SOD activity and native-PAGE immunoblotting for identification of isoforms and determination of SOD isoenzyme activity pattern in potato. Depending on cultivar and growing conditions, one MnSOD, 3 FeSOD and 5–6 Cu/ZnSOD isoforms were identified in potato leaves. The most important qualitative difference between ex vitro- and in vitro-grown plants was the presence of additional FeSOD and Cu/ZnSOD isoforms in plantlets grown in vitro. Compared with results of in-gel activity assay with selective inhibitors, new method allowed accurate identification of comigrating FeSOD and Cu/ZnSOD isoforms and two protein bands of ambiguous identities. Potato SODs were also characterized by SDS-PAGE immunoblotting and single MnSOD (23.6 kDa), three Cu/ZnSOD polypeptides (17.9, 17 and 16.3 kDa) and single FeSOD (25.1 kDa) polypeptide were detected in leaves of four examined cultivars. The difference in the number of FeSOD and Cu/ZnSOD isoforms/polypeptides between native-PAGE and SDS-PAGE immunoblots suggests that SOD proteins may have undergone post-translational modifications affecting protein mobility or existence of isoforms that differ from each other in total protein charge, but not in molecular weight.  相似文献   

6.
In a previous study, we found copper (Cu) accumulated to a higher level in the aerial parts of soil-grown plants of the SUMO E3 ligase siz1 mutant than in those of the wild-type. Here, we found that all superoxide dismutase (SOD) isoforms, such as FeSOD, MnSOD and different types of Cu/ZnSOD, were more active in the siz1 mutant than in the wild type under normal growth conditions. We further examined the expression and enzymatic activity of Cu/ZnSOD1 (CSD1) in shoots of the siz1 mutant under excess Cu. Shoot CSD1 protein level and activity were reduced in siz1 with excess Cu but induced in the wild type. SIZ1-dependent SUMOylation may be involved in maintaining CSD1 protein stability or repelling a feedback regulation under Cu stress.Key words: Cu/Zn SOD, CSD1, SUMO E3 ligase, SIZ1, Cu stress  相似文献   

7.
The effects of hypoxia caused by complete submerging of Mnium undulatum gametophores in water, on their photosynthetic activity and the activity of two antioxidative enzymes: superoxide dismutase (SOD) and catalase (CAT) were investigated. The net photosynthesis was strongly inhibited throughout the experiment, and the strong drop in the maximum quantum yield of the PSII (Fv/Fm) was also observed. Three classes of SOD: MnSOD, FeSOD, Cu/ZnSOD and three isoforms of Cu/ZnSOD were identified. A significant decrease in activity of MnSOD, FeSOD and one Cu/ZnSOD isoform was observed after 24 and 48 h of hypoxia. FeSOD activity decreased already after 1 h of submerging in water and its activity remained at the low level during whole period of the experiment. CAT activity was also strongly inhibited in response to hypoxia stress. The obtained results suggest relationships between photosynthetic activity and antioxidative system in M. undulatum gametophores under oxygen deficiency stress.  相似文献   

8.
Superoxide dismutase (SOD) is considered to be the first line of defense against oxygen toxicity. It exists as a family of three metalloproteins with copper,zinc (Cu,ZnSOD), manganese (MnSOD), and iron (FeSOD) forms. In this work, we have targeted Escherichia coli FeSOD to the mitochondrial intermembrane space (IMS) of yeast cells deficient in mitochondrial MnSOD. Our results show that FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air but does not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress. Cloned FeSOD must be targeted to the mitochondrial matrix to protect the cells from both physiological and induced oxidative stress. This confirms that the superoxide radical is mainly generated on the matrix side of the inner mitochondrial membrane of yeast cells, without excluding its potential appearance in the mitochondrial IMS where its elimination by SOD is beneficial to the cells.  相似文献   

9.
In light-grown callus obtained from M. crystallinum hypocotyls, three classes of superoxide dismutase (SOD): Mn-, Fe- and Cu/ZnSOD were identified. Callus cultured on a medium containing 0.4 M NaCl showed an increase in FeSOD activity on day 4 of the experiment. In contrast, Cu/ZnSOD activity was higher over 16 days of the experiment. Salinity stress induces oxidative stress mainly for the cytosolic SOD form (Cu/ZnSOD). After 16 days of callus culture on salt-containing medium, diurnal malate oscillations, and an increase in NADP-malic enzyme activity were noticed. These results strongly suggest that C3-CAM transition can also be expressed at the cellular level. Therefore, callus tissue could be a useful model, similar to a whole plant, for investigation of mechanisms of stress responses in M. crystallinum.  相似文献   

10.
Crassulacean acid metabolism (CAM) is named after the Crassulaceae family of succulent plants, in which this type of metabolism was first discovered at the beginning of the 19th century. In recent years, Mesembryanthemum crystallinum, a facultative halophyte and C3–CAM intermediate plant, has become a favoured plant for studying stress response mechanisms during C3–CAM shifts. Recent studies in this and related areas can provide a new model of how such mechanisms could operate for acclimation to high salinity or excess excitation energy. These include roles for photosynthetic electron transport chain components and reactive oxygen species. The diurnal rhythms of catalase, superoxide dismutase and some CAM-related enzyme activities are discussed in relation to the protective role of photorespiration during C3–CAM transition. The role of excess excitation energy and redox events in the proximity of photosystem II (PSII) in regulation of ascorbate peroxidase (APX), superoxide dismutase (SOD): copper/zinc SOD (Cu/ZnSOD), iron SOD (FeSOD), and NAD(P)-malic enzyme gene expression are also discussed. We suggest a model in which the chloroplast plays a major role in regulation of acclimation to high salinity and/or excess exitation energy.  相似文献   

11.
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against superoxide generated during illumination of leaf discs impregnated with methyl viologen. By contrast, overproduction of a mitochondrial MnSOD from Nicotiana plumbaginifolia in the chloroplasts of cv SR1 protected only the plasmalemma, but not photosystem II, against methyl viologen (L. Slooten, K. Capiau, W. Van Camp, M. Van Montagu, C. Sybesma, D. Inzé [1995] Plant Physiol 107: 737-750). The difference in effectiveness correlates with different membrane affinities of the transgenic FeSOD and MnSOD. Overproduction of FeSOD does not confer tolerance to H2O2, singlet oxygen, chilling-induced photoinhibition in leaf disc assays, or to salt stress at the whole plant level. In nontransgenic plants, salt stress led to a 2- to 3-fold increase in activity, on a protein basis, of FeSOD, cytosolic and chloroplastic Cu/ZnSOD, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. In FeSOD-overproducing plants under salt stress, the induction of cytosolic and chloroplastic Cu/ZnSOD was suppressed, whereas induction of a water-soluble chloroplastic ascorbate peroxidase isozyme was promoted.  相似文献   

12.
YU  Q.; RENGEL  Z. 《Annals of botany》1999,83(2):175-182
The effect of copper (Cu), zinc (Zn) or manganese (Mn) deficiencyon the growth and activity of superoxide dismutase (SOD) formswas investigated in seedlings of narrow-leafed lupins (LupinusangustifoliusL.). Plants grown without Zn developed Zn deficiencysymptoms 24 d after sowing (DAS), and those grown without Mnshowed Mn deficiency symptoms 31 DAS. However, plants grownwithout Cu did not show visible leaf symptoms. Shoot dry weightwas decreased by Zn and Mn deficiency 24 DAS, and by Cu deficiency31 DAS. Soluble protein concentration was reduced considerablyby Zn deficiency 24 DAS, but was not affected by Cu deficiencyuntil 31 DAS. In contrast, soluble protein concentration inMn-deficient plants was higher than in control plants 31 DAS.Shoot concentration of micronutrients which were not suppliedto plants decreased significantly, with a simultaneous increasein concentration of one or more of the other nutrients analysed.The activities of total SOD, MnSOD and Cu/ZnSOD on a fresh weightbasis declined drastically in -Cu and -Zn plants 24 DAS. Onthe contrary, the activities of total SOD and Cu/ZnSOD on eithera fresh weight or soluble protein basis increased markedly in-Mn plants 24 DAS, and MnSOD activity increased significantlyin these plants 31 DAS. It was concluded that micronutrientdeficiency (Cu, Zn or Mn) altered the activities of SOD formsdepending on the kind and severity of the deficiency stress.Manipulation of the capacity of plants to tolerate oxidativestress may influence their capacity to tolerate micronutrientdeficiency.Copyright 1999 Annals of Botany Company. Copper,Lupinus angustifolius, manganese, deficiency, superoxide dismutase, zinc.  相似文献   

13.
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.  相似文献   

14.
15.
Mechanical wounding of Mesembryanthemum crystallinum leaves in planta induced a fast decrease in stomatal conductance, which was related to accumulation of hydrogen peroxide (H(2)O(2)). Higher levels of H(2)O(2) were accompanied by an increase in total activity of superoxide dismutase (SOD) and a decrease in catalase (CAT) activity. Among SOD forms, manganese SOD (MnSOD) and copper/zinc SOD (Cu/ZnSOD) seem to be especially important sources of H(2)O(2) at early stages of wounding response. Moreover, NADP-malic enzyme (NADP-ME), one of the key enzymes of primary carbon metabolism, which is also involved in stress responses, showed a strong increase in activity in wounded leaves. All these symptoms: high accumulation of H(2)O(2), high activities of Cu/ZnSOD and NADP-ME, together with the decrease of CAT activity, were also observed in the major veins of unwounded leaves. The potential role of veinal tissues as an important source of H(2)O(2) during wounding response is discussed.  相似文献   

16.
东方山羊豆Cu/ZnSOD基因的克隆及表达分析   总被引:2,自引:0,他引:2  
Li YK  Wang XM  Gao HW  Ren AQ  Wang Z  Sun GZ 《遗传》2012,34(1):95-101
超氧化物歧化酶是一种广泛存在于真核生物中的金属酶类,在植物的抗逆性中起到重要的作用。文章采用RACE方法,从东方山羊豆中克隆了Cu/ZnSOD基因,并对其进行了初步分析。该基因cDNA序列全长935 bp,开放阅读框600 bp,编码199个氨基酸,蛋白质分子量为20.35 kDa。通过实时荧光定量PCR结果分析,该基因在东方山羊豆叶中表达量最多,茎中次之,根中最少。在NaCl和PEG诱导下,Cu/ZnSOD基因表达量先上调后下降。NaCl诱导24 h后,该基因的表达量显著低于对照。ABA胁迫抑制了该基因的表达。亚细胞定位结果表明,Cu/ZnSOD蛋白定位于叶绿体中。实验结果证明,Cu/ZnSOD基因主要在东方山羊豆的绿色组织中表达,在抵抗渗透性胁迫方面起到一定作用。  相似文献   

17.
We investigated the effect of salt stress on enzymatic activity of superoxide dismutase (SOD) isozymes in shoot and root tissues of salt tolerant and sensitive wheat (Triticum aestivum L. and Triticum durum Defs.) cultivars. Ten day old seedlings were subjected to 0.7 M NaCl stress for 3 and 5 days. Seedlings treated in the same manner without salt stress served as controls. Activity of SOD isozymes in root and shoot extracts was determined by activity staining of native polyacrylamide gels. In both shoot and root extracts of examined cultivars two isozymes of SOD, namely MnSOD and Cu/ZnSOD were identified. Cu/ZnSOD activity comprised 90 % of total SOD activity in both root and shoot tissues. Salt stress caused 1–1.5 fold increase in MnSOD activity of shoots in tolerant cultivars when compared with non-stressed controls. Under stress conditions, compared to controls all cultivars exhibited reduced MnSOD activity in root tissues. Cu/ZnSOD activity, on the other hand, was remarkably enhanced (3–4 fold) in root extracts of the tolerant cultivars, whereas it was reduced in the sensitive ones.  相似文献   

18.
The effects on red blood cells of superoxide dismutase (Cu,ZnSOD) depletion, induced by feeding Wistar rats with a copper deficient diet, were investigated. SOD depleted red blood cells were more sensitive to peroxidation and to hemolysis than normal cells when exposed to tert-butylhydroperoxide (t-BOOH). Membranes isolated from SOD depleted cells showed a lower content of vitamin E and higher (Na+, K+) and Mg2+ ATPase activities. These results support the view that superoxide dismutase plays an important role in cellular oxidative metabolism.  相似文献   

19.
20.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号