首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
HU, a nonspecific histone-like DNA binding protein, participates in a number of genomic events as an accessory protein and forms multiple complexes with DNA. The HU-DNA binding interaction was characterized by fluorescence, generated with the guanosine analogue 3-methyl-8-(2-deoxy-beta-D-ribofuranosyl)isoxanthopterin (3-MI) directly incorporated into DNA duplexes. The stoichiometry and equilibrium binding constants of complexes formed between HU and 13 and 34 bp DNA duplexes were determined using fluorescence anisotropy and analytical ultracentrifugation. These measurements reveal that three HU molecules bind to the 34 bp duplexes, while two HU molecules bind to the 13 bp duplex. The data are well described by an independent binding site model, and the association constants for the first binding event for both duplexes are similar (approximately 1 x 10(6) M(-1)), indicating that HU binding affinity is independent of duplex length. Further analysis of the binding curves in terms of a nonspecific binding model is indicative that HU binding to DNA exhibits little to no cooperativity. The fluorescence intensity also increases upon HU binding, consistent with decreased base stacking and increased solvent exposure of the 3-MI fluorescence probe. These results are suggestive of a local bending or unwinding of the DNA. On the basis of these results we propose a model in which bending of DNA accompanies HU binding. Up to five complex bands are observed in gel mobility shift assays of HU binding to the 34 bp duplexes. We suggest that protein-induced bending of the DNA leads to the observation of complexes in the gel, which have the same molecular weight but different relative mobilities.  相似文献   

2.
The effects of HU, the histone-like protein from Escherichia coli, on the equilibrium cyclization of duplex DNAs have been observed as a function of protein concentration and DNA sequence. The results indicate that the presence of HU significantly enhances the extent of cyclization and increases the melting temperature, T(m), of the cyclized form of the DNA by >10 K. The stabilization of equilibrium cyclization by HU binding is at least -1.2 kcal/mol. The results are consistent with two HU homotypic dimers binding to each of the three 29-mer duplexes studied. One of the 29-mer duplexes contains a central dA tract, one contains mismatched sites, and one a conventional sequence. Stepwise or microscopic association constants, determined from the fluorescence data, range from 1.5 to 0.6 micro M(-1). The binding affinity of the HU dimer is strongest for the mismatched duplex and lowest for the dA tract, consistent with HU dimers having a preference for flexible DNA substrates. These results demonstrate the utility of the equilibrium cyclization approach to monitor DNA-protein interactions. These results have been considered along with those previously obtained to refine a model for the interaction of HU with duplex DNA.  相似文献   

3.
Determination of the extent of DNA bending by an adenine-thymine tract   总被引:26,自引:0,他引:26  
H S Koo  J Drak  J A Rice  D M Crothers 《Biochemistry》1990,29(17):4227-4234
We determined the magnitude of the bend induced in DNA by an adenine-thymine tract by measuring the rate of cyclization of DNA oligonucleotides containing phased A tracts. A series of linear multimers with 2-bp single-stranded ends, in which the (A.T)6 tracts are separated by CG2-3C sequences and are positioned 10 and 11 bp apart alternately, were prepared from 21 bp long synthetic duplexed deoxyoligonucleotides. The cyclization rates of the multimers (105-210 bp) and the bimolecular association rate of the 84 bp long multimer were measured in the presence of DNA ligase. From the rate constants of the cyclization and bimolecular association reactions, ring closure probabilities were obtained for the multimers. The systematically bent molecules were simulated by Monte Carlo methods, and the ring closure probabilities were calculated for a given set of junction bend angles. By comparing the calculated values of ring closure probabilities to experimental values and adjusting the junction bend angles to fit experimental values, the extent of bending at the junctions (or the extent of bending for an adenine tract) was determined. We conclude that an A6 tract bends the DNA helix by 17-21 degrees.  相似文献   

4.
For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and sequence specificity of binding (singly mismatched duplexes) using mainly absorption hypochromicity melting curves and isothermal titration calorimetry. For perfectly sequence-matched duplexes of varying lengths (6-20 bp), the average free energy of binding (DeltaG degrees ) was determined to be -6.5+/-0.3 kJ mol(-1) bp(-1), corresponding to a microscopic binding constant of about 14 M(-1) bp(-1). A variety of single mismatches were introduced in 9- and 12-mer PNA-DNA duplexes. Melting temperatures (T(m)) of 9- and 12-mer PNA-DNA duplexes with a single mismatch dropped typically 15-20 degrees C relative to that of the perfectly matched sequence with a corresponding free energy penalty of about 15 kJ mol(-1) bp(-1). The average cost of a single mismatch is therefore estimated to be on the order of or larger than the gain of two matched base pairs, resulting in an apparent binding constant of only 0.02 M(-1) per mismatch. The impact of a mismatch was found to be dependent on the neighboring base pairs. To a first approximation, increasing the stability of the surrounding region, i.e., the distribution of A.T and G.C base pairs, decreases the effect of the introduced mismatch.  相似文献   

5.
6.
Oligodeoxyribonucleotides (5'-phosphorylated) of varying lengths were capped using a polyamide linker to form thermodynamically stable, endcapped DNA duplexes containing 8-14 bp. We have employed these endcapped DNA duplexes as tools to determine the DNA footprint of T4 DNA ligase. By high-performance liquid chromatography and PAGE analysis of the ligation mixtures of the endcapped DNA duplexes, we have found that by varying the lengths and the position of the nick, we can determine the minimal DNA-binding site as well as the mode of binding (symmetrical or asymmetrical binding) by the enzyme. The results of the study revealed that a 11 bp endcapped duplex was the shortest duplex effectively ligated. Dependence of ligation efficiency on nick position demonstrates that T4 DNA ligase bound asymmetrically to its DNA substrate. The use of a set of thermodynamically stable endcapped deoxyribonucleoside duplexes as a tool to elucidate the DNA footprint provides an efficient strategy for footprinting, which avoids ambiguities associated with chemical and biochemical footprinting methods.  相似文献   

7.
Y H Wang  M T Howard  J D Griffith 《Biochemistry》1991,30(22):5443-5449
Tracts of four to six adenines phased with the DNA helix produce a sequence-directed bending of the helix axis. Here, using gel electrophoresis and electron microscopy (EM), we have asked whether a similar motif will induce bending in a duplex RNA helix. Single-stranded RNAs were transcribed either from short synthetic DNA templates or from Crithidia fasciculata kinetoplast bent DNA, and the complementary single-stranded RNAs were annealed to produce duplex RNA molecules containing blocks of four to six adenines. Electrophoresis on polyacrylamide gels revealed no retardation of the RNAs containing phased blocks of adenines relative to duplex RNAs lacking such blocks. Examination by EM showed most of the molecules to be straight or only slightly bent. Thus, in contrast to DNA duplexes, phased adenine tracts do not induce sequence-directed bending in double-stranded RNA. Analysis of the distribution of molecule shapes for the highly bent C. fasciculata DNA showed that the adenine blocks do not act cooperatively to induce DNA bending and that the molecules must equilibrate between a spectrum of bent shapes.  相似文献   

8.
DNA recognition by the human UV-damaged DNA-binding (UV-DDB) protein was characterized. By circular permutation analyses, DNA duplexes containing the (6-4) photoproduct and the abasic site analog were found to be bent at angles of 54 degrees and 57 degrees, respectively, when they formed a complex with this protein. Although kinked NMR structures have been reported, fluorescence resonance energy transfer experiments revealed that these duplexes had no intrinsic bend. These results suggest that the UV-DDB protein binds DNA that can be bent easily at the above angle.  相似文献   

9.
Atomic force microscopy (AFM) has been used to image a 471-bp bent DNA restriction fragment derived from the M13 origin of replication in plasmid LITMUS 28, and a 476-bp normal, unbent fragment from plasmid pUC19. The most probable angle of curvature of the 471-bp DNA fragment is 40-50 degrees, in reasonably good agreement with the bend angle determined by transient electric birefringence, 38 degrees +/- 7 degrees. The normal 476-bp DNA fragment exhibited a Gaussian distribution of bend angles centered at 0 degrees, indicating that this fragment does not contain an intrinsic bend. The persistence length, P, was estimated to be 60 +/- 8 and 62 +/- 8 nm for the 471- and 476-bp fragments, respectively, from the observed mean-square end-to-end distances in the AFM images. Since the P-values of the normal and bent fragments are close to each other, the overall flexibility of DNA fragments of this size is only marginally affected by the presence of a stable bend. The close agreement of AFM and transient electric birefringence results validates the suitability of both methods for characterizing DNA bending and flexibility.  相似文献   

10.
The influence of DNA base sequence context on the removal of a bulky benzo[a]pyrene diol epoxide-guanine adduct, (+)-trans-B[a]P-N2-dG (G*), by UvrABC nuclease from the thermophilic organism Bacillus caldotenax was investigated. The lesion was flanked by either T or C in otherwise identical complementary 43-mer duplexes (TG*T or CG*C, respectively). It was reported earlier that in the CG*C context, a dominant minor groove adduct structure was observed by NMR methods with all Watson-Crick base pairs intact, and the duplex exhibited a rigid bend. In contrast, in the TG*T context, a highly flexible bend was observed, base pairing at G*, and two 5'-base pairs flanking the adduct were impaired, and multiple solvent-accessible adduct conformations were observed. The TG*T-43-mer duplexes are incised with consistently greater efficiency by UvrABC proteins from B. caldotenax by a factor of 2.3 +/- 0.3. The rates of incisions increase with increasing temperature and are characterized by linear Arrhenius plots with activation energies of 27.0 +/- 1.5 and 23.4 +/- 1.0 kcal/mol for CG*C and TG*T duplexes, respectively. These values reflect the thermophilic characteristics of the UVrABC nuclease complex and the contributions of the different DNA substrates to the overall activation energies. These effects are consistent with base sequence context-dependent differences in structural disorder engendered by a loss of local base stacking interactions and Watson-Crick base pairing in the immediate vicinity of the lesions in the TG*T duplexes. The local weakening of base pairing interactions constitutes a recognition element of the UvrABC nucleotide excision repair apparatus.  相似文献   

11.
While solution structures of adenine tract (A-tract) oligomers have indicated a unique bend direction equivalent to negative global roll (commonly termed "minor-groove bending"), crystallographic data have not unambiguously characterized the bend direction; nevertheless, many features are shared by all A-tract crystal and solution structures (e.g. propeller twisting, narrow minor grooves, and localized water spines). To examine the origin of bending and to relate findings to the crystallographic and solution data, we analyze molecular dynamics trajectories of two solvated A-tract dodecamers: 1D89, d(CGCGA(6)CG), and 1D98, d(CGCA(6)GCG), using a new general global bending framework for analyzing bent DNA and DNA/protein complexes. It is significant that the crystallographically-based initial structures are converted from dissimilar to similar bend directions equivalent to negative global roll, with the average helical-axis bend ranging from 10.5 degrees to 14.1 degrees. The largest bend occurs as positive roll of 12 degrees on the 5' side of the A-tracts (supporting a junction model) and is reinforced by gradual curvature at each A-tract base-pair (bp) step (supporting a wedge model). The precise magnitude of the bend is subtly sequence dependent (consistent with a curved general sequence model). The conversion to negative global roll only requires small local changes at each bp, accumulated over flexible moieties both outside and inside the A-tract. In contrast, the control sequence 1BNA, d(CGCGA(2)TTCGCG), bends marginally (only 6.9 degrees ) with no preferred direction. The molecular features that stabilize the bend direction in the A-tract dodecamers include propeller twisting of AT base-pairs, puckering differences between A and T deoxyriboses, a narrow minor groove, and a stable water spine (that extends slightly beyond the A-tract, with lifetimes approaching 0.2 ns). The sugar conformations, in particular, are proposed as important factors that support bent DNA. It is significant that all these curvature-stabilizing features are also observed in the crystallographic structures, but yield overall different bending paths, largely due to the effects of sequences outside the A-tract. These results merge structural details reported for A-tract structures by experiment and theory and lead to structural and dynamic insights into sequence-dependent DNA flexibility, as highlighted by the effect of an A-tract variant of a TATA-box element on bending and flexibility required for TBP binding.  相似文献   

12.
13.
The synthesis of an oligonucleotide (ODN) modified with pyrene (pyr) on the 5'-phosphate is described. The ODN and pyrene are joined through a linker composed of four methylene groups. Modification of the oligonucleotide was effected via condensation of the 2-cyanoethyl N,N-diisopropylphosphoramidite of 4-(1-pyrenyl)butanol (pyr-m4OPAm, 2) with the 5'-OH of an ODN. This derivative is suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The properties of the 5'-(pyr-m4)d(T)15 (3) and the duplex it formed with d(A)15 were investigated by fluorescence and absorbance spectroscopy. The pyrene fluorescence in the modified duplex was quenched 96.3% relative to an identical concentration of free 4-(1-pyrenyl)butanol. The ultraviolet spectrum of the 5'-(pyr-m4)-d(T)15 and 5'-(pyr-m4)-d(T)15-d-(A)15 modified duplex, in the 320-360-nm region, was red-shifted 6 nm relative to the free 4-(1-pyrenyl)-butanol. The Tm values of the unmodified and modified duplexes at 0.1 M NaCl were 34.9 and 41.9 degrees C, respectively. The pyrene-induced stabilization corresponds to a free energy change (delta delta G degrees) of -2.6 kcal/mol.  相似文献   

14.
Oligodeoxyribonucleotides (5′-phosphorylated) of varying lengths were capped using a polyamide linker to form thermodynamically stable, endcapped DNA duplexes containing 8–14 bp. We have employed these endcapped DNA duplexes as tools to determine the DNA footprint of T4 DNA ligase. By high-performance liquid chromatography and PAGE analysis of the ligation mixtures of the endcapped DNA duplexes, we have found that by varying the lengths and the position of the nick, we can determine the minimal DNA-binding site as well as the mode of binding (symmetrical or asymmetrical binding) by the enzyme. The results of the study revealed that a 11 bp endcapped duplex was the shortest duplex effectively ligated. Dependence of ligation efficiency on nick position demonstrates that T4 DNA ligase bound asymmetrically to its DNA substrate. The use of a set of thermodynamically stable endcapped deoxyribonucleoside duplexes as a tool to elucidate the DNA footprint provides an efficient strategy for footprinting, which avoids ambiguities associated with chemical and biochemical footprinting methods.  相似文献   

15.
To study the helical structure in a P-loop formed by an invasion of oligopyrimidine peptide nucleic acid (PNA) into DNA duplex, bent DNA fragments containing a homopurine.homopyrimidine sequence between two bent DNA loci were prepared. As the spacer DNA length between the two bent loci varied by 1 bp over one helical turn, the electrophoretic mobility, reflecting the overall extent of DNA bending, was modulated sinusoidally in non-denaturing 5% polyacrylamide gel. When the bent DNA fragments differing in the spacer DNA length were preincubated with an oligopyrimidine PNA, the gel mobilities were changed due to a P-loop formation. By analyzing the gel mobility data with variations of the P-loop size, average helical parameters at the P-loop structure were determined. (PNA)2. (DNA) triplex within a P-loop had the helical periodicities of 15. 6(0.2) bp per turn at 20 degrees C and 17.4(0.7) bp per turn at 10 degrees C. In addition, the results indicate that a helical unwinding by 57(7) degrees at 20 degrees C and 37(13) degrees at 10 degrees C is present at the two junctions between a P-loop and its adjacent DNA duplex.  相似文献   

16.
Prokaryotic genomes are compacted by association with small basic proteins, generating what has been termed bacterial chromatin. The ubiquitous DNA-binding protein HU serves this function. DNA-binding properties of HU from the hyperthermophilic eubacterium Thermotoga maritima are shown here to differ significantly from those characteristic of previously described HU homologs. Electrophoretic mobility shift analyses show that T. maritima HU (TmHU) binds double-stranded DNA with high affinity (K(d)=5.6(+/-0.7) nM for 37 bp DNA). Equivalent affinity is observed between 4 degrees C and 45 degrees C. TmHU has higher affinity for DNA containing a set of 4 nt loops separated by 9 bp (K(d)=1.4(+/-0.3) nM), consistent with its introduction of two DNA kinks. Using DNA probes of varying length, the optimal binding site for TmHU is estimated at 37 bp, in sharp contrast to the 9-10 bp binding site reported for other HU homologs. Alignment of >60 HU sequences demonstrates significant sequence conservation: A DNA-intercalating proline residue is almost universally conserved, and it is preceded by arginine and asparagine in most sequences, generating a highly conserved RNP motif; V substitutes for R only in HU from Thermotoga, Thermus and Deinococcus. A fivefold increase in DNA-binding affinity is observed for TmHU in which V is replaced with R (TmHU-V61R; K(d)=1.1(+/-0.2) nM), but a change in the trajectory of DNA flanking the sites of DNA intercalation is inferred from analysis of TmHU-V61R binding to DNA modified with 4 nt loops or with substitutions of 5-hydroxymethyluracil for thymine. Survival in extreme environments places unique demands on protection of genomic DNA from thermal destabilization and on access of DNA to the cellular machinery, demands that may be fulfilled by the specific DNA-binding properties of HU and by the fine structure of the bacterial chromatin.  相似文献   

17.
The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length.  相似文献   

18.
PNAs with terminal modifications of varying structure and charge were synthesized and their binding to DNA was studied. A variation in thermal stability of 19. 8 degrees C has been observed between the least and the most stable PNA-DNA duplexes. The most stable duplex melts 7.7 degrees C higher than the duplex of the corresponding non-modified PNA and complementary DNA. It has been shown that sequence fidelity of the PNA conjugate having the highest DNA affinity is significantly better than that of non-modified PNA. The results obtained can be used for the design of PNA probes, whose binding to DNA is sequence independent.  相似文献   

19.
A generic hexadeoxyribonucleotide microchip has been applied to test the DNA-binding properties of HU histone-like bacterial protein, which is known to have a low sequence specificity. All 4096 hexamers flanked within 8mers by degenerate bases at both the 3′- and 5′-ends were immobilized within the 100 × 100 × 20 mm polyacrylamide gel pads of the microchip. Single-stranded immobilized oligonucleotides were converted in some experiments to the double-stranded form by hybridization with a specified mixture of 8mers. The DNA interaction with HU was characterized by three type of measurements: (i) binding of FITC-labeled HU to microchip oligonucleotides; (ii) melting curves of complexes of labeled HU with single-stranded microchip oligonucleotides; (iii) the effect of HU binding on melting curves of microchip double-stranded DNA labeled with another fluorescent dye, Texas Red. Large numbers of measurements of these parameters were carried out in parallel for all or many generic microchip elements in real time with a multi-wavelength fluorescence microscope. Statistical analysis of these data suggests some preference for HU binding to G/C-rich single-stranded oligonucleotides. HU complexes with double-stranded microchip 8mers can be divided into two groups in which HU binding either increased the melting temperature (Tm) of duplexes or decreased it. The stabilized duplexes showed some preference for presence of the sequence motifs AAG, AGA and AAGA. In the second type of complex, enriched with A/T base pairs, the destabilization effect was higher for longer stretches of A/T duplexes. Binding of HU to labeled duplexes in the second type of complex caused some decrease in fluorescence. This decrease also correlates with the higher A/T content and lower Tm. The results demonstrate that generic microchips could be an efficient approach in analysis of sequence specificity of proteins.  相似文献   

20.
To determine what topological changes antiparasitic heterocyclic dications can have on kinetoplast DNA, we have constructed ligation ladders, with phased A5 and ATATA sequences in the same flanking sequence context, as models. Bending by the A5 tract is observed, as expected, while the ATATA sequence bends DNA very little. Complexes of these DNAs with three diamidines containing either furan, thiophene or selenophene groups flanked by phenylamidines were investigated along with netropsin. With the bent A5 ladder the compounds caused either a slight increase or decrease in the bending angle. Surprisingly, however, with ATATA all of the compounds caused significant bending, to values close to or even greater than the A5 bend angle. Results with a mixed cis sequence, which has one A5 and one ATATA, show that the compounds bend ATATA in the same direction as a reference A5 tract, that is, into the minor groove. These results are interpreted in terms of a groove structure for A5 which is largely pre-organized for a fit to the heterocyclic amidines. With ATATA the groove is intrinsically wider and must close to bind the compounds tightly. The conformational change at the binding site then leads to significant bending of the alternating DNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号