首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid‐localized pentatricopeptide repeat (PPR) protein with a small MutS‐related domain, is required for maturation of the 23S–4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5′ end of the 23S–4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA ‘footprint’ associated with this site in sot1 mutants. We found that more than half of the 23S–4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5′ and 3′ ends, and that the endonucleolytic cleavage product normally released from the 5′ end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5′ extremity of the 23S–4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5′ and 3′ ends.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Pentatricopeptide repeat (PPR) proteins bind RNA and act in multiple eukaryotic processes, including RNA editing, RNA stability, and translation. Here, we investigated the mechanism underlying the functional versatility of Arabidopsis thaliana PROTON GRADIENT REGULATION3 (PGR3), a chloroplast protein harboring 27 PPR motifs. Previous studies suggested that PGR3 acts in (1) stabilization of photosynthetic electron transport L (petL) operon RNA, (2) translation of petL, and (3) translation of ndhA. We showed here that replacement of the 4th amino acid of the 12th PPR with nonpolar or charged amino acids abolished functions (1) and (2) but not (3) of PGR3 by compromising the function of this specific PPR. This discovery enabled us to knock out the RNA binding ability of individual PPR motifs. Consequently, we showed that the 16 N-terminal PPRs were sufficient for function (1) via sequence-specific RNA binding, whereas the 11 C-terminal motifs were essential for functions (2) and (3) by activating translation. We also clarified that the 14th amino acid of the 12th PPR should be positively charged to make the PPR functionally active. Our finding opens up the possibility of selectively manipulating the functions of PPR proteins.  相似文献   

16.
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号