首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There has been a dramatic increase in the prevalence of diabetes mellitus (DM) and its associated complications globally. The postprandial stage of DM involves prompt elevation in the levels of blood glucose and α-amylase, a carbohydrate-metabolizing enzyme is mainly involved in the regulation of postprandial hyperglycemia. This study was designed to assess the ability of a well-known flavonoid, taxifolin (TFN), against postprandial hyperglycemia and its inhibitory effects on α-amylase activity through the assessment of therapeutic potentials of TFN in an alloxan-induced diabetic animal model. The binding potential TFN with an α-amylase receptor was also investigated through molecular dynamics (MD) simulation and docking of to compare the binding affinities and energies of TFN and standard drug acarbose (ACB) with target enzyme. TFN significantly improved the postprandial hyperglycemia, lipid profile, and serum levels of α-amylase, lipase, and C-reactive protein in a dose-dependent manner when compared with that of either DM-induced and ACB-treated alloxan-induced diabetic rats. Moreover, TFN also enhanced the anti-oxidant status and normal functioning of the liver in alloxan-induced diabetic rats more efficiently as compared to that of ACB-treated alloxan-induced diabetic rats. Therapeutic potentials of TFN were also verified by MD simulation and docking results, which exhibited that the binding energy and affinity of TFN to bind with receptor was significantly higher as compared to that of ACB. Hence, the results of this study signify that TFN might be a potent inhibitor of α-amylase that has the potential to regulate the postprandial hyperglycemia along with its anti-inflammatory and anti-oxidant properties during the treatment of DM.  相似文献   

2.
Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination withTrigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines. The effect of this combination was studied on lens morphology and glucose metabolism in diabetic rats. Lens, an insulin-independent tissue, was found severely affected in diabetes showing visual signs of cataract. Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH)]were observed in the lenses from diabetic rats and diabetic rats treated with insulin (2 IU/day), SOV (0.6 mg/ml),T. f. graecum seed powder (TSP, 5%) and TSP (5%) in combination with lowered dose of vanadium SOV (0.2 mg/ml), for a period of 3 weeks. The activity of the enzymes, hexokinase, aldose reductase and sorbitol dehydrogenase was significantly increased whereas the activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase decreased significantly in lenses from 3 week diabetic rats. Significant increase in accumulation of metabolites, sorbitol, fructose, glucose was found in diabetic lenses. TBARS measure of peroxidation increased whereas the levels of antioxidant GSH decreased significantly in diabetic condition. Insulin restored the levels of altered enzyme activities and metabolites almost to control levels. Sodium orthovanadate (0.6 mg/ml) andTrigonella administered separately to diabetic animals could partially reverse the diabetic changes, metabolic and morphological, while vanadate in lowered dose in combination withTrigonella was found to be the most effective in restoring the altered lens metabolism and morphological appearance in diabetes. It may be concluded that vanadate at lowered doses administered in combination withTrigonella was the most effective in controlling the altered glucose metabolism and antioxidant status in diabetic lenses, these being significant factors involved in the development of diabetic complications, that reflects in the reduced lens opacity  相似文献   

3.
Brain Indoleamines in Alloxan- and Streptozotocin-Induced Diabetic Rats   总被引:1,自引:0,他引:1  
Previous work by other authors has shown that alloxan-induced diabetes increases whereas streptozotocin-induced diabetes does not alter nonesterified fatty acid (NEFA) plasma levels. The present study replicates these results and demonstrates that fasted, streptozotocin-induced diabetic animals also have increased NEFA levels. In addition, brain levels of 5-hydroxytryptamine (5-HT) and of its immediate precursor and metabolite were measured. Alloxan- and fasted, streptozotocin-induced diabetic rats showed significant increases in brain indoleamine concentrations, whereas fed, streptozotocin-induced diabetic rats had unchanged levels of the same compounds. Levels of brain indoleamines exhibited a strong positive correlation with wet-dog shakes (an index of 5-HT activity) elicited by hippocampal stimulation. Blockade of wet-dog shakes by 5-HT receptor antagonists strengthens the proposal that this behavior is a good index of central 5-HT activity. The increased content of brain indoleamines in alloxan- and fasted, streptozotocin-induced diabetic rats may be related to the increased NEFA plasma levels seen in the same animals. This hypothesis is supported by the positive correlation demonstrated between NEFA and 5-HT levels. In conclusion, it is suggested that alloxan-induced diabetes may represent a useful model for studying the various behavioral changes known to occur in diabetics.  相似文献   

4.
Crystallins are the major structural proteins in the vertebrate eye lens that contribute to lens transparency. Although cataract, including diabetic cataract, is thought to be a result of the accumulation of crystallins with various modifications, the effect of hyperglycemia on status of crystallin levels has not been investigated. This study evaluated the effect of chronic hyperglycemia on crystallin levels in diabetic cataractous rat lens. Diabetes was induced in rats by injecting streptozotocin and maintained on hyperglycemia for a period of 10 weeks. At the end, levels of α-, β-, γ-crystallins and phosphoforms of αB-crystallins (αBC) were analyzed by immunoblotting. Further, solubility of crystallins and phosphoforms of αBC was analyzed by detergent soluble assay. Chronic diabetes significantly decreased the protein levels of α-, β- and αA-crystallins (αAC) in both soluble and insoluble fraction of lens. Whereas γ-crystallin levels were decreased and αBC levels were increased in lens soluble fraction with no change in insoluble fraction in diabetic rat lens. Although, diabetes activated the p38MAPK signaling cascade by increasing the p-p38MAPK in lens, the phosphoforms of αBC were decreased in soluble fraction with a concomitant increase in insoluble fraction of diabetic lens when compared to the controls. Moreover, diabetes strongly enhances the degradation of crystallins and phosphoforms of αBC in lens. Taken together, the decreased levels of crystallins and insolubilization of phosphoforms of αBC under chronic hyperglycemia could be one of the underlying factors in the development of diabetic cataract.  相似文献   

5.
6.
Diabetic dyslipidemia, the main causative factor for the progression of vascular complications in diabetes, is caused due to hyperglycemia and excess mobilisation of fatty acids. Recently we have reported on a novel macrocyclic binuclear oxovanadium (MBOV) complex synthesized by us with significant hypoglycemic efficacy and without any apparent toxicity on streptozotocin induced diabetic rats. In the present study, streptozotocin induced diabetic rats were treated with the vanadium complex (5 mg/kg body weight/day) for a period of 30 days and at the end of the treatment period the status of the lipid profile in the plasma, liver and kidney was evaluated. Also the fatty acid composition of liver and kidney were analysed by gas chromatography. The increased levels of lipid contents in plasma and tissues observed in diabetic rats were reverted back to near normal levels by the administration of the vanadium complex. Also the decreased levels of HDL cholesterol and increased levels of LDL cholesterol in plasma of diabetic rats were restored to near normal levels by the treatment with the vanadium complex. The altered fatty acid composition in liver and kidney were restored by the treatment. The results enhance the claim for the macrocyclic binuclear oxovanadium complex as a potent anti-diabetogenic drug.This revised version was published online in May 2005 with a corrected article title.  相似文献   

7.
The aim of the present study was to evaluate the copper (Cu), zinc (Zn), malondialdehyde (MDA), glutathione (GSH), and advanced oxidation protein products (AOPP) levels and superoxide dismutase (SOD) activities in diabetic senile cataract. Ten patients with diabetic senile cataract and ten patients with nondiabetic senile cataract (control group) were included in this study. AOPP, MDA, and GSH levels and SOD activity were measured by a spectrophotometric method. Serum, lens Cu, and Zn levels were measured by an atomic absorption spectrophotometric method. Both the lens and serum Zn and Cu levels between the two groups were not significantly different (p > 0.05). GSH, AOPP, and MDA levels and the SOD activities in the diabetic senile cataract group were significantly increased as compared to the control group (p < 0.05). Oxidative stress is one of the major factors which may lead to the early cataract formation. Oxidative events are of great importance in diabetic complications and, particularly in the lens, may have a role in the pathogenesis of cataract associated with diabetes mellitus as exhibited in this study.  相似文献   

8.
本文研究了富硒发酵毛头鬼伞(鸡腿菇)Coprinus comatus菌丝体对四氧嘧啶致糖尿病小鼠抗氧化和降血糖的影响。四氧嘧啶建立糖尿病小鼠模型后,将富硒发酵毛头鬼伞菌丝均匀混入饲料中,由小鼠自由取食进行治疗,3周后观察富硒毛头鬼伞菌丝对糖尿病小鼠血糖、MDA、SOD和GSH-Px的影响。结果发现,采用富硒发酵毛头鬼伞菌丝进行治疗后,糖尿病小鼠血糖明显降低;血清和组织中MDA含量显著下降;血清和组织中的SOD和GSH-Px的活力明显的增加。由此推断,富硒发酵毛头鬼伞菌丝对四氧嘧啶致糖尿病小鼠的降血糖效果可能是通过提高机体抗氧化能力来实现的。  相似文献   

9.
Background

Testicular injury is one of the most serious problems associated with diabetes mellitus. The present study aimed to compare the effects of two different doses of nobiletin and analyze its mechanisms of action against diabetes-induced testicular impairment in rats.

Methods and results

Streptozotocin injection was used to induce diabetes. Diabetic rats received nobiletin orally at 10 or 25 mg/kg daily for 30 days. Diabetic rats displayed significant elevations in glucose, glycosylated hemoglobin (HbA1c), Homeostatic Model of Insulin Resistance (HOMA-IR), and pro-inflammatory cytokines, while the serum levels of insulin, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly reduced. Histological changes to positivity for caspase-3 and decreased androgen receptors (AR) immunoexpression were observed in diabetic rats. Both doses of nobiletin improved hyperglycemia, reduced pro-inflammatory cytokines, and augmented insulin, testosterone, LH, and FSH levels. LH and FSH receptors and cytochrome P450 17 α-hydroxylase (CYP17A1) were markedly downregulated in terms of both gene and protein expression in testicular tissues of the diabetic group, effects that were markedly ameliorated with both doses of nobiletin. In addition, both doses significantly reduced lipid peroxidation and caspase-3 immunoexpression and improved the activity of the antioxidant enzymes and AR in testicular tissues of the diabetic group.

Conclusion

Both nobiletin doses showed protective effects against diabetes-induced testicular injury by reducing oxidative stress, hyperglycemia, inflammation, and caspase-3 and upregulating the hypophysis–gonadal axis and AR. The high dose of nobiletin was more effective than the lower one.

  相似文献   

10.
Aavirai Kudineer (AK) is an herbal decoction of seven botanical drugs, cited in the Gunapadam; a Tamil Siddha medical text. The anti-diabetic efficacy of this formulation was evaluated using alloxan-induced diabetic and normal rats. Glucose tolerance was observed within 1 hr in AK-treated rats (10 ml/kg body ) as compared to control. A significant decrease in the severe hyperglycemia characteristic of alloxan diabetes was noted after 15 days of AK treatment. Further AK treatment reversed the elevated urea, creatinine, cholesterol and decreased protein values to near normal levels. Assay of glycogen content and chief carbohydrate-metabolizing enzymes, viz. hexokinase, glucose-6-phosphatase and fructose 1,6 diphosphatase in the liver of diabetic and AK-treated diabetic rats clearly ascertains the hypoglycemic efficacy of this formulation. The mode of action of this herbal formulation remains to be elucidated.  相似文献   

11.
This study aimed to evaluate the effect of a polysaccharide named levan, which was produced by new isolated bacteria, on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. Levan polysaccharide was given in drinking water for 60 days at a daily dose equivalent to 2%. The oral administration of levan in diabetic rats caused a decrease in glucose level in plasma and an increase of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities in both pancreas and liver. Furthermore, a protective action against hepatic and pancreatic toxicity in diabetic rats was clearly observed. Furthermore, a significant decrease in hepatic and pancreatic indices toxicity was observed, i.e., alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT), lactate deshydrogenases (LDH) activities and the thiobarbituric acid-reactive substances (TBARs). These beneficial effects of levan were confirmed by histological findings in hepatic and pancreatic tissues of diabetic rats. This study demonstrates for the first time that levan is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that administration of levan may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

12.
Diabetes is a common metabolic disorder characterized by elevated blood glucose level. Trace element homeostasis causes disturbances in diabetes due to hyperglycemia. Superoxide dismutase (SOD), an antioxidant enzyme, contains zinc and copper ions as its cofactors. Defects in SOD level and activity have been observed in diabetes. Resveratrol (RSV) has displayed hypoglycemic effects and is proven to improve oxidative stress. The aim of the present study was to examine the possible effects of RSV on blood glucose level, serum copper and zinc levels, SOD, and a number of other oxidative markers in type 2 diabetic rats. Diabetes was induced in male Wistar rats with administration of streptozotocin and nicotine amide. The studied groups containing six animals per group were as follows: group 1 normal control group; group 2 diabetic control group; groups 3, 4, and 5 diabetic rats that received 1, 5, and 10 mg/kg body weight of RSV, respectively for 30 days. Serum glucose, copper, zinc, SOD activity, total oxidant status (TOS) as well as thiol groups were all measured. Blood glucose in RSV treated groups significantly decreased. Similarly, copper significantly decreased in diabetic groups treated with RSV. Treatment with 10 mg/kg RSV resulted in significantly increased serum zinc. Furthermore, Cu/Zn ratio was observed to decrease in treated groups compared with untreated diabetic control group. RSV treated groups revealed an increased level of SOD activity as well as improved oxidative status. In summary, the results showed that RSV has potential hypoglycemic effect, attenuates trace element homeostasis, and consequently increases SOD activity level.  相似文献   

13.
The purpose of this study was to evaluate the effects of vanadium absorbed by Coprinus comatus (VACC) treatment on bone in streptozotocin (STZ)-induced diabetic rats. Forty-five Wistar female rats used were divided into three groups: (1) normal rats (control), (2) diabetic rats, and (3) diabetic rats treated with VACC. Normal and diabetic rats were given physiological saline, and VACC-treated rats were administered VACC intragastrically at doses of 0.18 mg vanadium/kg body weight once daily. Treatments were performed over a 12-week period. At sacrifice, one tibia and one femur were removed, subjected to micro computed tomography (micro-CT) for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. Another femoral was used for mechanical testing. In addition, bone samples were collected to evaluate the content of mineral substances in bones. Treatment with VACC increased trabecular bone volume fraction in diabetic rats. Vanadium-treated animals had significant increases in ultimate load, trabecular thickness, and osteoblast surface. However, vanadium treatment did not seem to affect bone stiffness, bone energy absorption, trabecular separation, and osteoclast number. P levels in the femurs of diabetic rats treated with VACC were significantly higher than those of diabetic animals. Ca levels in diabetic and diabetic rats treated with vanadium showed no obvious changes. In conclusion, our results provide an important proof of concept that VACC may represent a powerful approach to treating or reversing diabetic osteopathy in humans.  相似文献   

14.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

15.
This study was designed to investigate the hypoglycaemic and anti-oxidant effects of Zingiber officinale on experimentally induced diabetes mellitus using alloxan and insulin resistance. Aqueous extracts of raw ginger was administered orally at a chosen dose of 500mg/ml for a period of 4 weeks to alloxan-induced diabetic and insulin resistant diabetic rats. The experimental rats exhibited hyperglycaemia accompanied with weight loss to confirm their diabetic state. Ginger effectively reduced fasting blood glucose and malonydealdehyde levels in alloxan-induced diabetic and insulin resistant diabetic rats compared to control and ginger only treated rats. Furthermore, ginger increased serum insulin level and also enhanced insulin sensitivity in alloxan-induced diabetic and insulin resistant diabetic rats compared to control and ginger only treated rats. The results of the study clearly show that dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity. One of the likely mechanisms is the action of malonydealdehyde, which acts as a scavenger of oxygen radicals. Keywords: Diabetes mellitus, Insulin resistance, Zingiber officinale, Malonydealdehyde.  相似文献   

16.
Diabetes is associated with low concentrations of apoM in plasma. In db/db mice, ob/ob mice as well as in the alloxan-induced diabetic mouse, the low apoM levels are paralleled by decreased expression of the apoM gene. In the latter model, insulin substitution tended to reverse the low apoM expression. It is not known whether the impairment in apoM expression can be ascribed to hyperglycemia, insulin deficiency or insulin resistance. In the present study, we investigated apoM levels and expression in rats rendered hyperglycemic by short-term glucose infusion. As expected, serum insulin concentrations rose moderately during the infusions. Serum apoM concentrations and hepatic apoM mRNA levels were significantly reduced in the hyperglycemic rats, indicating that the low expression of apoM in these diabetic models can be ascribed to hyperglycemia rather than to insulin deficiency or insulin resistance. However, in HepG2 cells both glucose and insulin markedly inhibited apoM expression these effects were additive. Thus, the possible effects of insulin in vivo seem to be mediated indirectly.  相似文献   

17.
This study aims to examine the effects of polysaccharide levan on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. Levan, used in this study, was a microbial levan synthetisized by a non pathogenic bacteria recently isolated and identified as Bacillus licheniformis. Animals were allocated into four groups of six rats each: a control group (Control), diabetic group (Diab.), normal rats received levan (L) and diabetic rats fed with levan (DL). Treated diabetic rats were administrated with levan in drinking water through oral gavage for 60 days. The administration of polysaccharide levan in diabetic rats caused a significant increase in glycogen level by 52% and a decrease in glucose level in plasma by 52%. Similarly, the administration of polysaccharide levan in diabetic rats caused a decrease in the thiobarbituric acid-reactive substances (TBARS) by 31%, 41%, 39% and 25%, an increase in superoxide dismutase (SOD) by 40%, 50%, 44% and 34%, and in catalase (CAT) by 18%, 20%, 12% and 18% in liver, kidney, pancreas and heart, respectively. Furthermore, a significant decrease in hepatic and renal indices toxicity was observed, i.e. alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT) activities, total bilirubin, creatinine and urea levels by 19%, 31%, 32%, 36%, 37% and 23%, respectively. The results show that administration of polysaccharide levan can restore abnormal oxidative indice near normal levels. This study demonstrates, for the first time, that polysaccharide levan is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that levan supplemented to diet may be helpful in preventing diabetic complications in adult rats.  相似文献   

18.
This study aimed to evaluate the effect of phenolic extract and purified hydroxytyrosol (HT) from olive mill waste (OMW) on oxidative stress and hyperglycemia in alloxan-induced diabetic rats. The OMW biophenols were extracted using ethyl acetate. The obtained extract was fractionated by solid phase extraction (SPE) experimentation to generate two fractions: (F1) and (F2). HPLC-UV and HPLC-MS analysis showed that (F1) was made of known OMW monomeric phenolics mainly hydroxytyrosol (HT) while (F2) contained oligomeric and polymeric phenols such as verbascosid and ligstrosid. (HT) was purified from (F1) using silica gel-column chromatography and silica gel-TLC techniques. In incubated pancreas, supplementation of OMW fractions enhanced insulin secretion. The administration of OMW extract fractions (F1) and (F2) as well as purified (HT) in diabetic rats caused a decrease in glucose level in plasma and an increase in renal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities in liver and kidney. Furthermore, a protective action against hepatic and renal toxicity in diabetic rats was clearly observed. Furthermore, a significant decrease in hepatic and renal indices toxicity was observed, i.e. alkalines phosphatases (ALP), aspartate and lactate transaminases (AST and ALT) activities and the thiobarbituric acid-reactive substances (TBARs), total and direct bilirubin, creatinine and urea levels. In addition, (F1), (F2) and especially (HT) decreased triglycerides (TG), total-cholesterol (T-Ch) and higher HDL-cholesterol (HDL-Ch) in serum. These beneficial effects of OMW biophenols were confirmed by histological findings in hepatic, renal and pancreatic tissues of diabetic rats. This study demonstrates for the first time that OMW polyphenols and especially (HT) are efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggests that administration of HT may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

19.
Chronic hyperglycemia in diabetes is associated with profound changes in lipid and lipoprotein metabolism, with resultant alterations in particle distribution within lipoprotein classes. In the present study, an attempt has been made to explore the antihyperlipidemic effect of fisetin in streptozotocin‐induced experimental diabetes in rats. Upon fisetin treatment to diabetic rats, the levels of blood glucose were significantly reduced with an improvement in plasma insulin. The increased levels of lipid contents in serum, hepatic, and renal tissues observed in diabetic rats were normalized upon fisetin administration. Also, the decreased levels of high‐density lipoprotein cholesterol, and increased levels of low‐density lipoprotein (LDL) and very LDL (VLDL) cholesterol in serum of diabetic rats were normalized. Oil Red O staining established a large number of intracellular lipid droplets accumulation in the diabetic rats. Fisetin treatment exacerbated the degree of lipid accumulation. The results of the present study exemplify the antihyperlipidemic property of the fisetin.  相似文献   

20.
Hyperglycemia-induced oxidative stress plays a vital role in the progression of diabetic nephropathy. The renoprotective nature of taurine has also been reported earlier; but little is known about the mechanism of this beneficial action. The present study has, therefore, been carried out to explore in detail the mechanism of the renoprotective effect of taurine under diabetic conditions. Diabetes was induced in rats by alloxan (single i.p. dose of 120?mg/kg body weight) administration. Taurine was administered orally for 3?weeks (1% w/v in drinking water) either from the day on which alloxan was injected or after the onset of diabetes. Alloxan-induced diabetic rats showed a significant increase in plasma glucose, enhanced the levels of renal damage markers, plasma creatinine, urea nitrogen and urinary albumin. Diabetic renal injury was associated with increased kidney weight to body weight ratio and glomerular hypertrophy. Moreover, it increased the productions of reactive oxygen species, enhanced lipid peroxidation and protein carbonylation in association with decreased intracellular antioxidant defense in the kidney tissue. In addition, hyperglycemia enhanced the levels of proinflammatory cytokins (TNF-α, IL-6, IL-1β) and Na+–K+-ATPase activity with a concomitant reduction in NO content and eNOS expression in diabetic kidney. Investigation of the oxidative stress-responsive signaling cascades showed the upregulation of PKCα, PKCβ, PKCε and MAPkinases in the renal tissue of the diabetic animals. However, taurine administration decreased the elevated blood glucose and proinflammatory cytokine levels, reduced renal oxidative stress (via decrease in xanthine oxidase activity, AGEs formation and inhibition of p47phox/CYP2E1 pathways), improved renal function and protected renal tissue from alloxan-induced apoptosis via the regulation of Bcl-2 family and caspase-9/3 proteins. Taurine supplementation in regular diet could, therefore, be beneficial to regulate diabetes-associated renal complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号