首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature.  相似文献   

2.
3.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

4.
Changes in the fractions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in two laboratory-scale reactors were investigated using 16S rRNA probe hybridizations. The reactors were operated in intermittent aeration mode and different aeration cycles to treat anaerobically digested swine wastewater with ammonia concentrations up to 175 mg NH(3)-N/L. High ammonia removals (>98.8%) were achieved even with increased nitrogen loads and lower aeration: non-aeration time ratios of 1h:3h. Nitrosomonas/Nitrosococcus mobilis were the dominant ammonia-oxidizing bacteria in the reactors. Nitrospira-like organisms were the dominant nitrite-oxidizing bacteria during most of the investigation, but were occasionally outcompeted by Nitrobacter. High levels of nitrifiers were measured in the biomass of both reactors, and ammonia-oxidizing bacteria and nitrite-oxidizing bacterial levels adjusted to changing aeration: non-aeration time ratios. Theoretical ammonia-oxidizer fractions, determined by a mathematical model, were comparable to the measured values, although the measured biomass fractions were different at each stage while the theoretical values remained approximately constant. Stable ammonia removals and no nitrite accumulation were observed even when rRNA levels of ammonia oxidizers and nitrite-oxidizers reached a minimum of 7.2% and 8.6% of total rRNA, respectively. Stable nitrogen removal performance at an aeration: non-aeration ratio of 1h:3h suggests the possibility of significant savings in operational costs.  相似文献   

5.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

6.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus mobilis-like bacteria. The phylogenetic affiliation suggested by fluorescent in situ hybridization (FISH) was confirmed by isolation of N. mobilis as the numerically dominant ammonia oxidizer and subsequent comparative 16S rRNA gene (rDNA) sequence and DNA-DNA hybridization analyses. For molecular fine-scale analysis of the ammonia-oxidizing population, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified from total DNA extracted from ammonia oxidizer isolates and from activated sludge. However, comparative sequence analysis of 13 amoA clone sequences from activated sludge demonstrated that these sequences were highly similar to each other and to the corresponding amoA gene fragments of Nitrosomonas europaea Nm50 and the N. mobilis isolate. The unexpected high sequence similarity between the amoA gene fragments of the N. mobilis isolate and N. europaea indicates a possible lateral gene transfer event. Although a Nitrobacter strain was isolated, members of the nitrite-oxidizing genus Nitrobacter were not detectable in the activated sludge by in situ hybridization. Therefore, we used the rRNA approach to investigate the abundance of other well-known nitrite-oxidizing bacterial genera. Three different methods were used for DNA extraction from the activated sludge. For each DNA preparation, almost full-length genes encoding small-subunit rRNA were separately amplified and used to generate three 16S rDNA libraries. By comparative sequence analysis, 2 of 60 randomly selected clones could be assigned to the nitrite-oxidizing bacteria of the genus Nitrospira. Based on these clone sequences, a specific 16S rRNA-targeted probe was developed. FISH of the activated sludge with this probe demonstrated that Nitrospira-like bacteria were present in significant numbers (9% of the total bacterial counts) and frequently occurred in coaggregated microcolonies with N. mobilis.  相似文献   

7.
Nitrogen is a major limiting nutrient for the net primary production of terrestrial ecosystems, especially on sentinel alpine ecosystem. Ammonia oxidation is the first and rate-limiting step on nitrification process and is thus crucial to nitrogen cycle. To decipher climatic influence on ammonia oxidizers, their communities were characterized by qPCR and clone sequencing by targeting amoA genes (encoding the alpha subunit of ammonia mono-oxygenase) in soils from 7 sites over an 800 m elevation transect (4400–5200 m a.s.l.), based on “space-to-time substitution” strategy, on a steppe-meadow ecosystem located on the central Tibetan Plateau (TP). Archaeal amoA abundance outnumbered bacterial amoA abundance at lower altitude (<4800 m a.s.l.), but bacterial amoA abundance was greater in surface soils at higher altitude (≥4800 m a.s.l.). Archaeal amoA abundance decreased with altitude in surface soil, while its abundance stayed relatively stable and was mostly greater than bacterial amoA abundance in subsurface soils. Conversely, bacterial amoA abundance gradually increased with altitude at all three soil depths. Statistical analysis indicated that altitude-dependent factors, in particular pH and precipitation, had a profound effect on the abundance and community of ammonia-oxidizing bacteria, but only on the community composition of ammonia-oxidizing archaea along the altitudinal gradient. These findings imply that the shifts in the relative abundance and/or community structure of ammonia-oxidizing bacteria and archaea may result from the precipitation variation along the altitudinal gradient. Thus, we speculate that altitude-related factors (mainly precipitation variation combing changed pH), would play a vital role in affecting nitrification process on this alpine grassland ecosystem located at semi-arid area on TP.  相似文献   

8.
【目的】系统评估全程氨氧化细菌(complete ammonia oxidizing bacteria, Comammox bacteria)、半程氨氧化细菌(AOB)和古菌(AOA)在典型水稻土剖面的垂直分异规律。2015年发现的"全程"氨氧化细菌(Comammox Nitrospira)可将氨分子一步氧化为硝酸盐,实现硝化作用。而经典的"半程"氨氧化细菌(AOB)或古菌(AOA)将氨分子氧化为亚硝酸盐后,再由系统发育完全不同的硝化细菌将其氧化为硝酸盐。全程氨氧化细菌实现了一步硝化全过程,根本改变了学术界对2类微生物分步硝化的经典认知,但相关研究仍处于初步阶段。【方法】选择重庆北碚地区2017年典型水稻土并采集5、10、20和40 cm不同深度土壤(剖面采样点的上下误差不超过1cm),提取水稻土总DNA后,利用标靶功能基因amoA,通过实时荧光定量PCR技术分析全程氨氧化细菌(Comammox)、半程氨氧化细菌(AOB)和古菌(AOA)在水稻土不同深度的数量变异规律。【结果】半程氨氧化细菌AOB和古菌AOA均随土壤深度增加呈显著下降趋势。然而,全程氨氧化细菌的两大类微生物则表现出相反的规律,Comammox Clade A的丰度随着土壤剖面的加深而显著增加(P0.05),但Clade B并未有类似规律。Clade A在水稻土不同层次的土层中均比Clade B高出1个数量级,在5 cm和40 cm处的最低和最高值分别为3.42×10~7、8.46×10~7 copies/g。AOA与AOB的丰度大致相当,5cm剖面处数量最高分别为1.23×10~7、1.83×10~5copies/g,但其平均丰度远低于全程氨氧化细菌,Comammox与AOA、AOB amoA功能基因拷贝数之比为10–2000。【结论】全程氨氧化细菌(Comammox bacteria)广泛分布于水稻土不同土层中,且数量远高于"半程"氨氧化细菌和古菌,意味着Comammox可能在水稻土硝化作用中起重要作用。  相似文献   

9.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

10.
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.  相似文献   

11.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

12.
Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.  相似文献   

13.
Inhibitory experiments were conducted to investigate the responses of the population sizes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and the potential nitrification rates (PNRs) to Cu contamination in four Chinese soils. PNR was determined using a substrate-induced nitrification (SIN) assay, and the population size of the nitrifiers represented by amoA gene abundances was quantified using a real-time polymerase chain reaction (qPCR) assay. Both population size and PNR of the ammonia oxidizers reduced considerably at high Cu concentrations in all the soils. Bacterial amoA gene abundance was reduced by from 107-fold (Hailun soil) to more than 232-fold (Hangzhou soil) at the highest Cu concentrations (2,400 mg kg?1 Cu for Hailun, Langfang and Guangzhou soils and 1,600 mg kg?1 Cu for Hangzhou soil), while reduction in archaeal amoA gene abundance was from 10-fold (Langfang soil) to 89-fold (Hangzhou soil). AOA seemed more tolerant to Cu contamination than AOB. Nitrification rates were inhibited by more than 50% at a Cu concentration of 600 mg kg?1, and by more than 90% at the highest Cu concentrations in all soils. These results indicated that both AOA and AOB can be inhibited by toxic metals, highlighting the need to consider the role of AOA in nitrification in soils.  相似文献   

14.
M. Meincke  E. Krieg    E. Bock 《Applied microbiology》1989,55(8):2108-2110
In five historical buildings in the Federal Republic of Germany, ammonia-oxidizing bacteria of the genera Nitrosovibrio, Nitrosospira, and Nitrosomonas were detected in high cell numbers. In building stones, Nitrosovibrio was the most abundant ammonia-oxidizing organism. In the soil at the foot of each building, Nitrosomonas spp. were the most common ammonia oxidizers, whereas Nitrosovibrio spp. were not detected.  相似文献   

15.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

16.
Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.  相似文献   

17.
18.
Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01–0.84 μM) indicated the hypolimnion as the major place of nitrification with 15N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%–21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.  相似文献   

19.
This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.  相似文献   

20.
The concentration of CO2 in the Earth's atmosphere has increased over the last century. Although this increase is unlikely to have direct effects on soil microbial communities, increased atmospheric CO2 may impact soil ecosystems indirectly through plant responses. This study tested the hypothesis that exposure of plants to elevated CO2 would impact soil microorganisms responsible for key nitrogen cycling processes, specifically denitrification and nitrification. We grew trembling aspen (Populus tremuloides) trees in outdoor chambers under ambient (360 ppm) or elevated (720 ppm) levels of CO2 for 5 years and analyzed the microbial communities in the soils below the trees using quantitative polymerase chain reaction and clone library sequencing targeting the nitrite reductase (nirK) and ammonia monooxygenase (amoA) genes. We observed a more than twofold increase in copy numbers of nirK and a decrease in nirK diversity with CO2 enrichment, with an increased predominance of Bradyrhizobia-like nirK sequences. We suggest that this dramatic increase in nirK-containing bacteria may have contributed to the significant loss of soil N in the CO2-treated chambers. Elevated CO2 also resulted in a significant decrease in copy numbers of bacterial amoA, but no change in archaeal amoA copy numbers. The decrease in abundance of bacterial amoA was likely a result of the loss of soil N in the CO2-treated chambers, while the lack of response for archaeal amoA supports the hypothesis that physiological differences in these two groups of ammonia oxidizers may enable them to occupy distinct ecological niches and respond differently to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号