首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Specialized protein translocation systems are used by many bacterial pathogens to deliver effector proteins into host cells that interfere with normal cellular functions. How the host immune system recognizes and responds to this intrusive event is not understood. To address these questions, we determined the mammalian cellular response to the virulence-associated type III secretion system (T3SS) of the human pathogen Yersinia pseudotuberculosis. We found that macrophages devoid of Toll-like receptor (TLR) signaling regulate expression of 266 genes following recognition of the Y. pseudotuberculosis T3SS. This analysis revealed two temporally distinct responses that could be separated into activation of NFκB- and type I IFN-regulated genes. Extracellular bacteria were capable of triggering these signaling events, as inhibition of bacterial uptake had no effect on the ensuing innate immune response. The cytosolic peptidoglycan sensors Nod1 and Nod2 and the inflammasome component caspase-1 were not involved in NFκB activation following recognition of the Y. pseudotuberculosis T3SS. However, caspase-1 was required for secretion of the inflammatory cytokine IL-1β in response to T3SS-positive Y. pseudotuberculosis. In order to characterize the bacterial requirements for induction of this novel TLR-, Nod1/2-, and caspase-1-independent response, we used Y. pseudotuberculosis strains lacking specific components of the T3SS. Formation of a functional T3SS pore was required, as bacteria expressing a secretion needle, but lacking the pore-forming proteins YopB or YopD, did not trigger these signaling events. However, nonspecific membrane disruption could not recapitulate the NFκB signaling triggered by Y. pseudotuberculosis expressing a functional T3SS pore. Although host cell recognition of the T3SS did not require known translocated substrates, the ensuing response could be modulated by effectors such as YopJ and YopT, as YopT amplified the response, while YopJ dampened it. Collectively, these data suggest that combined recognition of the T3SS pore and YopBD-mediated delivery of immune activating ligands into the host cytosol informs the host cell of pathogenic challenge. This leads to a unique, multifactorial response distinct from the canonical immune response to a bacterium lacking a T3SS.  相似文献   

4.
5.
Zhang W  Xu S  Li J  Shen X  Wang Y  Yuan Z 《Archives of microbiology》2011,193(5):351-363
The type VI secretion system (T6SS) is a novel secretion system found in many Gram-negative bacterial pathogens, which appears to be tightly regulated by different regulatory mechanisms. In the present study, we identified 4 T6SS clusters in Yersinia pseudotuberculosis and demonstrated that they were differentially thermoregulated. Among them, T6SS4 was preferentially expressed at 26°C, and its expression was growth phase dependent and subject to quorum sensing regulation. Both YpsI and YtbI AHL synthases contributed to the positive regulation of T6SS4, whereas YpsI synthase played the major role as T6SS4 expression was reduced strongly in the ypsI mutant strain but weakly in the ytbI mutant strain. Moreover, we provided evidence that exogenous addition of different synthetic AHLs complemented T6SS4 expression in different efficiencies in an ypsIytbI double mutant strain, suggesting C6-HSL had an antagonistic effect on T6SS4 expression. This is the first study demonstrating that the expression of T6SS is precisely regulated by temperature, growth phase, and AHL-dependent quorum sensing systems in Y. pseudotuberculosis.  相似文献   

6.
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.  相似文献   

7.
8.
9.
10.
11.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

12.
Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs) utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (-)-hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (-)-hopeaphenol in three different gram-negative bacteria. (-)-Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (-)-hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.  相似文献   

13.
All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops.  相似文献   

14.
Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.  相似文献   

15.
φA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. φA1122 infects Y. pestis grown both at 20°C and at 37°C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37°C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30°C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also φA1122 sensitive when grown at 22°C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous φA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (l-glycero-d-manno-heptose/d-glucopyranose)-Kdo/Ko (3-deoxy-d-manno-oct-2-ulopyranosonic acid/d-glycero-d-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully φA1122 resistant. Our data thus conclusively demonstrated that the φA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.  相似文献   

16.
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells.  相似文献   

17.
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号