首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Major depression (MD) has a complex multifactorial etiology with genetic and environmental factors contributing to the disorder. As with all antidepressant treatments, there is variability in drug response due to heredity, generally focusing on genetic polymorphism of the drug-metabolizing transporter genes. The serotonin transporter (5-HTT) gene is a particularly important candidate for genetic involvement in MD disorders owing to its key role in the regulation of serotonergic transmission and is therefore considered to be an interesting candidate in the mechanism of antidepressant drugs. In this study, we have focused on the associations between genetic polymorphisms in two regions of the 5-HTT gene (5-HTTLPR and VNTR) related to sertraline responses. Our sample consisted of 64 unrelated Turkish subjects who strictly met DSM-IV and CGI scores. There was no significant difference between the frequency of the SS, LS, LL, 9/10, 10/10, 9/12, 10/12, and 12/12 genotypes and responses to sertraline. However, the number of patients can be increased and different drugs can be studied in order to find a specific pharmacogenetic relation.  相似文献   

2.
Early life stress has been linked with poorer lifelong health outcomes across species, including modern and ancient humans. Epigenetic mechanisms, such as DNA methylation patterning of stress pathway genes in stress-responsive tissue, may play an important role in the long-term health effects of early stress across species. The relationships among early maternal care quality, DNA methylation patterns in a candidate stress pathway gene (serotonin transporter, 5-HTT) linked region in blood DNA, and adult health outcomes were examined in male and female rhesus macaques, excellent models of human health. Male (n = 12) and female (n = 32) infants were observed with their mothers for the first 12 weeks of life and 5-HTT linked DNA methylation was measured in blood at 12 weeks of age. Approximately 8 years later, health-related measures were collected for the 25 animals (6 male and 19 female) that were available for study. Health composite scores were generated using factor analysis of body condition, body weight, and diagnosis of diarrhea during the lifespan. Better quality maternal care predicted lower 5-HTT linked methylation at 12 weeks of age. Lower 5-HTT methylation, in turn, predicted better health composite scores in adulthood, including better body condition, greater body weight and absence of lifetime diarrhea. These data suggest that the epigenetic regulation of 5-HTT may be one biomarker of the link between early stress and lifetime health trajectories. Future studies will examine whether epigenetic signatures in modern and ancient human DNA lends insight into stress and health and natural selection in human evolutionary history. Am J Phys Anthropol 155:192–199, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT), and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT-/-) rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI), pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI) in 5-HTT-/- rats and wild-type controls (5-HTT+/+). We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT-/- versus 5-HTT+/+ rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT-/- rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT+/+ and 5-HTT-/- rats. The individual tests for differences between 5-HTT+/+ and 5-HTT-/- rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy) to 26.1% (pharmacological MRI) and 29.3% (functional connectivity). Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT-/- rats. Overall, the comparison of 5-HTT-/- and wild-type rats suggests mostly limited effects of 5-HTT genotype on MRI-based measures of brain morphology and function.  相似文献   

4.
Depressive disorders account for a large and increasing global burden of disease. Although the condition of many patients improves with medication, only a minority experience full remission, and patients whose condition responds to one medication may not have a response to others. Individual variation in antidepressant treatment outcome is, at present, unpredictable but may have a partial genetic basis. We searched for genetic predictors of treatment outcome in 1,953 patients with major depressive disorder who were treated with the antidepressant citalopram in the Sequenced Treatment Alternatives for Depression (STAR*D) study and were prospectively assessed. In a split-sample design, a selection of 68 candidate genes was genotyped, with 768 single-nucleotide-polymorphism markers chosen to detect common genetic variation. We detected significant and reproducible association between treatment outcome and a marker in HTR2A (P range 1 x 10(-6) to 3.7 x 10(-5) in the total sample). Other markers in HTR2A also showed evidence of association with treatment outcome in the total sample. HTR2A encodes the serotonin 2A receptor, which is downregulated by citalopram. Participants who were homozygous for the A allele had an 18% reduction in absolute risk of having no response to treatment, compared with those homozygous for the other allele. The A allele was over six times more frequent in white than in black participants, and treatment was less effective among black participants. The A allele may contribute to racial differences in outcomes of antidepressant treatment. Taken together with prior neurobiological findings, these new genetic data make a compelling case for a key role of HTR2A in the mechanism of antidepressant action.  相似文献   

5.
In order to improve the bioavailability of the antidepressant drug, venlafaxine hydrochloride, in situ mucoadhesive thermoreversible gel, was formulated using Lutrol F127 (18%) as a thermo gelling polymer. Mucoadhesion was modulated by trying carbopol 934, PVP K30, HPMC K4M, sodium alginate, tamarind seed gum, and carrageenan as mucoadhesive polymers. Results revealed that as the concentration of mucoadhesive polymer increased the mucoadhesive strength increased but gelation temperature decreased. Formulation was optimized on the basis of clarity, pH, gelation temperature, mucoadhesive strength, gel strength, viscosity, drug content, diffusion through sheep nasal mucosa, histopathological evaluation of mucosa, and pharmacodynamic study in rats. Final formulation T5 containing 18% Lutrol F127 and 0.3% PVP K30 was considered as an optimized formulation. T5 released 97.86 ± 0.073% drug in 150 min with a flux of 0.1545 mg cm−2 min−1 and gelation temperature 31.17 ± 0.30°C. Histopathological evaluation of nasal mucosa revealed that T5 formulation was safe for nasal administration as it caused no damage to nasal epithelium. From the results of pharmacodynamic study, mainly forced swim test (FST), it was concluded that venlafaxine hydrochloride was more effective as an antidepressant by nasal route as in situ gel nasal drops in comparison to oral administration of equivalent dose.Key words: lutrol F127, mucoadhesive, nasal in situ gel, thermoreversible, venlafaxine HCl  相似文献   

6.

Key message

The association of natural genetic variations of salt-responsive candidate genes belonging to different gene families with salt-tolerance phenotype and their haplotype variation in different geographic regions.

Abstract

Soil salinity covers a large part of the arable land of the world and is a major factor for yield losses in salt-sensitive crops, such as rice. Different gene families that respond to salinity have been identified in rice, but limited success has been achieved in developing salt-tolerant cultivars. Therefore, 21 salt stress-responsive candidate genes belonging to different gene families were re-sequenced to analyse their genetic variation and association with salt tolerance. The average single nucleotide polymorphism (SNP) density was 16 SNPs per kbp amongst these genes. The identified nucleotide and haplotype diversity showed comparatively higher genetic variation in the transporter family genes. Linkage disequilibrium (LD) analysis showed significant associations of SNPs in BADH2, HsfC1B, MIPS1, MIPS2, MYB2, NHX1, NHX2, NHX3, P5CS1, P5CS2, PIP1, SIK1, SOS1, and SOS2 genes with the salt-tolerant phenotype. A combined analysis of SNPs in the 21 candidate genes and eight other HKT transporter genes produced two separate clusters of tolerant genotypes, carrying unique SNPs in the ion transporter and osmoticum-related genes. Haplotype network analysis showed all the major and few minor alleles distributed over distant geographic regions. Minor haplotypes may be recently evolved alleles which migrated to distant geographic regions and may represent recent expansion of Indian wild rice. The analysis of genetic variation in different gene families identified the relationship between adaptive variations and functional significance of the genes. Introgression of the identified alleles from wild relatives may enhance the salt tolerance and consequently rice production in the salinity-affected areas.
  相似文献   

7.

Background

We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study.

Methods and Findings

A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered.

Conclusions

ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity.  相似文献   

8.
Associations of the VNTR-17 and 5-HTTLPR polymorphisms of the serotonin transporter gene with affective disorders, including depression, have been found. These polymorphisms were analyzed in two groups of Russian probands: patients with endogenous psychoses and control individuals without mental disorders (423 and 277 persons, respectively). No associations were found between VNTR-17 genotypes or alleles and the diseases. However, the frequency of10/10 (VNTR-17) homozygotes increased with age in both patients and healthy persons. The results of the analysis of the 5-HTTLPR polymorphism suggest an association of the short (s) allele of the 5-HTTLPR polymorphism with schizophrenia and schizoaffective psychoses, but not with affective disorders.  相似文献   

9.
Autism is a spectrum of neurodevelopmental disorders with a primarily genetic etiology exhibiting deficits in (1) development of language and (2) social relationships and (3) patterns of repetitive, restricted behaviors or interests and resistance to change. Elevated platelet serotonin (5-HT) in 20%-25% of cases and efficacy of selective 5-HT reuptake inhibitors (SSRIs) in treating anxiety, depression, and repetitive behaviors points to the 5-HT transporter (5-HTT; SERT) as a strong candidate gene. Association studies involving the functional insertion/deletion polymorphism in the promoter (5-HTTLPR) and a polymorphism in intron 2 are inconclusive, possibly because of phenotypic heterogeneity. Nonetheless, mounting evidence for genetic linkage of autism to the chromosome 17q11.2 region that harbors the SERT locus (SLC6A4) supports a genetic effect at or near this gene. We confirm recent reports of sex-biased genetic effects in 17q by showing highly significant linkage driven by families with only affected males. Association with common alleles fails to explain observed linkage; therefore, we hypothesized that preferential transmission of multiple alleles does explain it. From 120 families, most contributing to linkage at 17q11.2, we found four coding substitutions at highly conserved positions and 15 other variants in 5' noncoding and other intronic regions transmitted in families exhibiting increased rigid-compulsive behaviors. In the aggregate, these variants show significant linkage to and association with autism. Our data provide strong support for a collection of multiple, often rare, alleles at SLC6A4 as imposing risk of autism.  相似文献   

10.
Chronic stress has been reported to decrease bone density and intestinal calcium absorption, but its underlying mechanism remains elusive. Since long-term exposure to glucocorticoids, major stress hormones from adrenal gland, is known to downregulate the mRNA expression of intestinal calcium transporter TRPV6, the present study aimed to demonstrate whether decreases in mRNA expressions of duodenal calcium transporter genes were observed in male rats subjected to restraint stress for 4?weeks. The results from quantitative real-time PCR showed that restraint stress significantly downregulated the mRNA expressions of apical calcium channels (TRPV6 and Ca(v)1.3), cytoplasmic calcium-binding protein (calbindin-D(9k)), and basolateral calcium pump (PMCA(1b)), but not the expression of TRPV5 or NCX1. The mRNA expressions of paracellular genes, ZO-1, occludin, and claudin-3, were not altered by restraint stress. Since several antidepressant or anxiolytic drugs effectively alleviate stress-induced depressive and anxiety symptoms, we further hypothesized that these drugs may also enhance calcium transporter gene expression in stressed rats. As expected, 4-week daily administration of 10?mg/kg fluoxetine, 10?mg/kg reboxetine, or 10?mg/kg venlafaxine differentially increased calcium transporter mRNA expression in stressed rats, whereas 2?mg/kg diazepam had no such effect. It could, therefore, be concluded that 4-week restraint stress downregulated some important calcium transporter mRNA expression in the duodenal epithelial cells of male rats, which could be prevented by oral administration of fluoxetine, reboxetine, and venlafaxine. The present findings may be applied to help alleviate the stress-induced bone loss and osteoporosis by restoring intestinal calcium absorption to provide calcium for bone formation.  相似文献   

11.

Background

Antidepressant drugs are the mainstay of drug therapy for sustained remission of symptoms. However, the clinical results are not encouraging. This lack of response could be due, among other causes, to factors that alter the metabolism of the antidepressant drug. Objective: to evaluate the impact of concomitant administration of CYP2D6 inhibitors or substrates on the efficacy, tolerability and costs of patients treated with venlafaxine for major depressive disorder in clinical practice.

Methods

We designed an observational study using the medical records of outpatients. Subjects aged ≥18 years who started taking venlafaxine during 2008–2010 were included. Three study groups were considered: no combinations (reference), venlafaxine-substrate, and venlafaxine-inhibitor. The follow-up period was 12 months. The main variables were: demographic data, comorbidity, remission (Hamilton <7), response to treatment, adverse events and costs. The statistical analysis included logistic regression models and ANCOVA, with p values <0.05 considered significant.

Results

A total of 1,115 subjects were recruited. The mean age was 61.7 years and 75.1% were female. Approximately 33.3% (95% CI: 30.5 to 36.1) were receiving some kind of drug combination (venlafaxine-substrate: 23.0%, and venlafaxine-inhibitor: 10.3%). Compared with the venlafaxine-substrate and venlafaxine-inhibitor groups, patients not taking concomitant drugs had a better response to therapy (49.1% vs. 39.9% and 34.3%, p<0.01), greater remission of symptoms (59.9% vs. 50.2% and 43.8%, p<0.001), fewer adverse events (1.9% vs. 7.0% and 6.1%, p<0.05) and a lower mean adjusted cost (€2,881.7 vs. €4,963.3 and €7,389.1, p<0.001), respectively. All cost components showed these differences.

Conclusions

The patients treated with venlafaxine alone showed a better response to anti-depressant treatment, greater remission of symptoms, a lower incidence of adverse events and lower healthcare costs.  相似文献   

12.
13.
Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of?MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting.  相似文献   

14.
Genetic polymorphism contributes to variation in response to drug treatment of depression. We conducted three independent 6-week treatment studies in outpatients with major depressive disorder (MDD) to develop a pharmacogenomic model predicting response and nonresponse. We screened candidate genomic markers for association with response to selective serotonin reuptake inhibitors (SSRIs). No patients had received any antidepressant drug treatment in the current episode of depression. Outcome evaluation was blinded to drug and genotype data. The prediction model derived from a development sample of 239 completer cases treated with SSRIs comprised haplotypes and polymorphisms related to serotonin synthesis, serotonin transport, glutamate receptors, and GABA synthesis. The model was evaluated prospectively for prediction of outcome in a validation sample of 176 new SSRI-treated completer cases. The model gave a prediction in 60% of these cases. Predictive values were 85% for predicted responders and 86% for predicted nonresponders, compared to prior probabilities of 66% for observed response and 34% for observed nonresponse in those cases (both P<0.001). Convergent cross-validation was obtained through failure of the model to predict outcomes in a third independent sample of 189 completer cases who received non-SSRI antidepressants. We suggest proof of principle for genetic guidance to use or avoid SSRIs in a majority of Korean depressed patients.  相似文献   

15.
Over-expression of efflux transporter P-glycoprotein (PgP) encoded by ABCB1 gene has been implicated in poor responsive epilepsy. Several genetic variants have been shown to influence the expression levels of P-glycoprotein. The aim of the present study was to investigate the role of ABCB1 polymorphisms: C1236T, G2677T/A and C3435T in determining drug response to first line antiepileptic drugs (AEDs) namely phenobarbitone, phenytoin, carbamazepine and valproate in North Indian cohort of epilepsy patients. DNA samples were obtained from 392 consecutive epilepsy patients, out of which 228 had completed follow-up evaluation at 12 months. After attaining steady state of the AEDs in the first two months of study, 133 patients showed complete freedom from seizures (no-seizure group) and 95 patients continued to have seizures (recurrent-seizures group) in the remaining period of study. Comparison of “no-seizure” and “recurrent-seizures” groups revealed no significant differences in allelic, genotypic and haplotypic frequencies for all the studied variants. In conclusion, our finding disproves a general association between ABCB1 polymorphisms and drug response in epilepsy patients.  相似文献   

16.
Serotonin transporter gene variants are known to interact with stressful life experiences to increase chances of developing affective symptoms, and these same variants have been shown to influence amygdala reactivity to affective stimuli in non-psychiatric populations. The impact of these gene variants on affective neurocircuitry in anxiety and mood disorders has been studied less extensively. Utilizing a triallelic assay (5-HTTLPR and rs25531) to assess genetic variation linked with altered serotonin signaling, this fMRI study investigated genetic influences on amygdala and anterior insula activity in 50 generalized anxiety disorder patients, 26 of whom also met DSM-IV criteria for social anxiety disorder and/or major depressive disorder, and 39 healthy comparison subjects. A Group x Genotype interaction was observed for both the amygdala and anterior insula in a paradigm designed to elicit responses in these brain areas during the anticipation of and response to aversive pictures. Patients who are S/LG carriers showed less activity than their LA/LA counterparts in both regions and less activity than S/LG healthy comparison subjects in the amygdala. Moreover, patients with greater insula responses reported higher levels of intolerance of uncertainty, an association that was particularly pronounced for patients with two LA alleles. A genotype effect was not established in healthy controls. These findings link the serotonin transporter gene to affective circuitry findings in anxiety and depression psychopathology and further suggest that its impact on patients may be different from effects typically observed in healthy populations.  相似文献   

17.

Background

It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way.

Methods and Findings

The NEWMEDS consortium, an academia–industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10−8). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10−8) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D.

Conclusions

No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors'' Summary  相似文献   

18.
Associations of the VNTR-17 and 5-HTTLPR polymorphisms of the serotonin transporter gene with affective disorders, including depression, have been found. These polymorphisms were analyzed in two groups of Russian probands: patients with endogenous psychoses and control individuals without mental disorders (423 and 277 persons, respectively). No associations were found between VNTR-17 genotypes or alleles and the diseases. However, the frequency of 10/10 (VNTR-17) homozygotes increased with age in both patients and healthy persons. The results of the analysis of the 5-HTTLPR polymorphism suggest an association of the short (s) allele of the 5-HTTLPR polymorphism with schizophrenia and schizoaffective psychoses, but not with affective disorders.  相似文献   

19.
PurposeTo compare the rate of mean deviation (MD) change on 24-2 versus 10-2 VFs in treated glaucomatous eyes with 5 or more examinations.MethodsIn a retrospective study, 24-2 and 10-2 VFs of 131 glaucoma patients (167 eyes) who had undergone at least 5 VFs examinations during their follow-up were analyzed. All these patients had VF defects both on 24-2 and 10-2 VFs. Rates of MD change were calculated using best linear unbiased predictions (BLUP).ResultsMedian age, MD on 24-2 VF at baseline, number of VFs performed during follow-up and follow-up duration were 55 years, -16.9 dB, 9 and 9 years respectively. Median rate of MD change was significantly greater (p<0.001) on 10-2 VF (-0.26 dB/year; interquartile range [IQR]: -0.47, -0.11) compared to 24-2 VFs (-0.19 dB/year; IQR: -0.41, -0.03). Comparing the rates of MD change in eyes with different severities of VF loss (early [MD better than -6 dB], moderate [-6 dB to -12 dB], advanced [-12 to -20 dB] and severe [MD worse than -20 dB]) at baseline (based on the MD on 24-2 VF), median rate of MD change was comparable between 10-2 and 24-2 VFs in mild (-0.45 dB/year vs. -0.40 dB/year, P = 0.42) and moderate (-0.32 dB/year vs. -0.40 dB/year, P = 0.26) VF loss categories, while the same were significantly greater on 10-2 VFs in advanced (-0.28 dB/year vs. -0.21 dB/year, P = 0.04) and severe (-0.18 dB/year vs. -0.06 dB/year, P<0.001) VF loss categories.ConclusionsIn patients with VF defects both on 24-2 and 10-2 VFs, evaluating the rate of MD change on 10-2 VFs may help in better estimation of glaucoma progression, especially so in eyes with advanced glaucoma at baseline.  相似文献   

20.
The highly evolutionarily conserved serotonin transporter (SERT) regulates the entire serotoninergic system and its receptors via modulation of extracellular fluid serotonin concentrations. Differences in SERT expression and function produced by three SERT genes and their variants show associations with multiple human disorders. Screens of DNA from patients with autism, ADHD, bipolar disorder, and Tourette's syndrome have detected signals in the chromosome 17q region where SERT is located. Parallel investigations of SERT knockout mice have uncovered multiple phenotypes that identify SERT as a candidate gene for additional human disorders ranging from irritable bowel syndrome to obesity. Replicated studies have demonstrated that the SERT 5'-flanking region polymorphism SS genotype is associated with poorer therapeutic responses and more frequent serious side effects during treatment with antidepressant SERT antagonists, namely, the serotonin reuptake inhibitors (SRIs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号