首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3′ untranslated region (3′-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.  相似文献   

3.

Background

The human QKI gene, called quaking homolog, KH domain RNA binding (mouse), is a candidate gene for schizophrenia encoding an RNA-binding protein. This gene was shown to be essential for myelination in oligodendrocytes. QKI is also highly expressed in astrocytes, but its function in these cells is not known.

Methods/Principal Findings

We studied the effect of small interference RNA (siRNA)-mediated QKI depletion on global gene expression in human astrocyte glioma cells. Microarray measurements were confirmed with real-time quantitative polymerase chain reaction (qPCR). The presence of QKI binding sites (QRE) was assessed by a bioinformatic approach. Viability and cell morphology were also studied. The most significant alteration after QKI silencing was the decreased expression of genes involved in interferon (IFN) induction (P = 6.3E-10), including IFIT1, IFIT2, MX1, MX2, G1P2, G1P3, GBP1 and IFIH1. All eight genes were down-regulated after silencing of the splice variant QKI-7, but were not affected by QKI-5 silencing. Interestingly, four of them were up-regulated after treatment with the antipsychotic agent haloperidol that also resulted in increased QKI-7 mRNA levels.

Conclusions/Significance

The coordinated expression of QKI-7 splice variant and IFN-related genes supports the idea that this particular splice variant has specific functions in astrocytes. Furthermore, a role of QKI-7 as a regulator of an inflammatory gene pathway in astrocytes is suggested. This hypothesis is well in line with growing experimental evidence on the role of inflammatory components in schizophrenia.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infection has been associated with perturbations of plasmacytoid dendritic cells (PDC), including diminished frequencies in the peripheral blood and reduced production of type I interferons (IFNs) in response to in vitro stimulation. However, recent data suggest a paradoxical increase in production of type 1 interferons in vivo in HIV-infected patients compared to uninfected controls. Using a flow cytometric assay to detect IFN-alpha-producing cells within unseparated peripheral blood mononuclear cells, we observed that short-term interruptions of antiretroviral therapy are sufficient to result in significantly reduced IFN-alpha production by PDC in vitro in response to CpG A ligands or inactivated HIV particles. The primary cause of diminished IFN-alpha production was reduced responsiveness of PDC to de novo stimulation, not diminished per cell IFN-alpha production or migration of cells to lymphoid organs. Real-time PCR analysis of purified PDC from patients prior to and during treatment interruptions revealed that active HIV-1 replication is associated with upregulation of type I IFN-stimulated gene expression. Treatment of hepatitis C virus-infected patients with IFN-alpha2b and ribavirin for hepatitis C virus infection resulted in a profound suppression of de novo IFN-alpha production in response to CpG A or inactivated HIV particles, similar to the response observed in HIV-infected patients. Together, these results suggest that diminished production of type I interferons in vitro by PDC from HIV-1-infected patients may not represent diminished interferon production in vivo. Rather, diminished function in vitro is likely a consequence of prior activation via type I interferons or HIV virions in vivo.  相似文献   

5.
The selective RNA‐binding protein Quaking I (QKI) has previously been implicated in RNA localization and stabilization, alternative splicing, cell proliferation, and differentiation. The spontaneously‐occurring quakingviable (qkv) mutant mouse exhibits a sharply attenuated level of QKI in myelin‐producing cells, including oligodendrocytes (OL) because of the loss of an OL‐specific promoter. The disruption of QKI in OLs results in severe hypomyelination of the central nervous system, but the underlying cellular mechanisms remain to be fully elucidated. In this study, we used the qkv mutant mouse as a model to study myelination defects in the cerebellum. We found that oligodendroglial development and myelination are adversely affected in the cerebellum of qkv mice. Specifically, we identified an increase in the total number of oligodendroglial precursor cells in qkv cerebella, a substantial portion of which migrated into the grey matter. Furthermore, these mislocalized oligodendroglial precursor cells retained their migratory morphology late into development. Interestingly, a number of these presumptive oligodendrocyte precursors were found at the Purkinje cell layer in qkv cerebella, resembling Bergman glia. These findings indicate that QKI is involved in multiple aspects of oligodendroglial development. QKI disruption can impact the cell fate of oligodendrocyte precursor cells, their migration and differentiation, and ultimately myelination in the cerebellum. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 972–982, 2016  相似文献   

6.
The STAR protein family member Quaking is essential for early development in vertebrates. For example, in oligodendrocyte cells it regulates the splicing, localization, translation and lifetime of a set of mRNAs that code for crucial components of myelin. The Quaking protein contains three contiguous conserved regions: a QUA1 oligomerization element, followed by a single-stranded RNA binding motif comprising the KH and QUA2 domains. An embryonic lethal point mutation in the QUA1 domain, E48G, is known to affect both the aggregation state and RNA-binding properties of the murine Quaking ortholog (QKI). Here we report the NMR solution structure of the QUA1 domain from the Xenopus laevis Quaking ortholog (pXqua), which forms a dimer composed of two perpendicularly docked α-helical hairpin motifs. Size exclusion chromatography studies of a range of mutants demonstrate that the dimeric state of the pXqua QUA1 domain is stabilized by a network of interactions between side-chains, with significant roles played by an intra-molecular hydrogen bond between Y41 and E72 (the counterpart to QKI E48) and an inter-protomer salt bridge between E72 and R67. These results are compared with recent structural and mutagenesis studies of QUA1 domains from the STAR family members QKI, GLD-1 and Sam68.  相似文献   

7.
Nucleic acid–sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid–inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.  相似文献   

8.
9.
Influenza A viruses (IAV) have been the cause of several influenza pandemics in history and are a significant threat for the next global pandemic. Hospitalized influenza patients often have excess interferon production and a dysregulated immune response to the IAV infection. Obtaining a better understanding of the mechanisms of IAV infection that induce these harmful effects would help drug developers and health professionals create more effective treatments for IAV infection and improve patient outcomes. IAV stimulates viral sensors and receptors expressed by alveolar epithelial cells, like RIG-I and toll-like receptor 3 (TLR3). These two pathways coordinate with one another to induce expression of type III interferons to combat the infection. Presented here is a queuing theory-based model of these pathways that was designed to analyze the timing and amount of interferons produced in response to IAV single stranded RNA and double-stranded RNA detection. The model accurately represents biological data showing the necessary coordination of the RIG-I and TLR3 pathways for effective interferon production. This model can serve as the framework for future studies of IAV infection and identify new targets for potential treatments.  相似文献   

10.
Quaking viable (Qk(v)) mice have developmental defects that result in their characteristic tremor. The quaking (Qk) locus expresses alternatively spliced RNA-binding proteins belonging to the STAR family. To characterize the RNA binding specificity of the QKI proteins, we selected for RNA species that bound QKI from random pools of RNAs and defined the QKI response element (QRE) as a bipartite consensus sequence NACUAAY-N(1-20)-UAAY. A bioinformatic analysis using the QRE identified the three known RNA targets of QKI and 1,430 new putative mRNA targets, of which 23 were validated in vivo. A large proportion of the mRNAs are implicated in development and cell differentiation, as predicted from the phenotype of the Qk(v) mice. In addition, 24% are implicated in cell growth and/or maintenance, suggesting a role for QKI in cancer.  相似文献   

11.
Preeclampsia (PE) is characterized by placental ischemia and hypoxia, resulting in abnormal casting of the uterine spiral artery, which is mainly caused by insufficient trophoblastic cell infiltration. A reduction in levels of growth factor-based signalling via Neuropilin-1 (NRP1) has been shown to contribute to dysfunctional trophoblast development. In this study, we showed that the RNA-binding protein, QKI5, regulated NRP1 expression and significantly improved trophoblast proliferation in vitro and in vivo. QKI5 and NRP1 expressions were significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of these factors significantly improved cell proliferation and migration in vitro, in contrast to a decrease upon siRNA knockdown of QKI5 and NRP1 in HTR-8/SVneo cells. Using RIP and RNA pull-down assays, we further showed that QKI5 directly interacted with the 3'-UTR region of NRP1, to mediate cell proliferation and migration via matrix metalloprotease-9. Further, similar to NRP1, QKI5 also targets matrix metalloproteinase 9 (MMP9) involved in secretion of growth factors and its effects can be counteracted by NRP1 overexpression. In vivo studies using a PE mouse model revealed that QKI5 overexpression alleviated PE-related symptoms such as elevated blood pressure and proteinuria. Taken together, we found that QKI5 was a novel regulator, of VEGF-R/NRP1 signalling pathway functioning in trophoblast proliferation and migration, resulting in major contributors to the pathogenesis of PE. While careful evaluation of the broad implications of QKI5 expression is still necessary, this study identified QKI5 as a promising target for treatment strategies in acute PE patients.  相似文献   

12.
Zhang Y  Lu Z  Ku L  Chen Y  Wang H  Feng Y 《The EMBO journal》2003,22(8):1801-1810
The selective RNA-binding protein QKI is essential for myelination in the central nervous system (CNS). QKI belongs to the family of signal transduction activators of RNA (STARs), characteristic of binding RNA and signaling molecules, therefore is postulated to regulate RNA homeostasis in response to developmental signals. Here we report that QKI acts downstream of the Src family protein tyrosine kinases (Src-PTKs) during CNS myelination. QKI selectively interacted with the mRNA encoding the myelin basic protein (MBP). Such interaction stabilized MBP mRNA and was required for the rapid accumulation of MBP mRNA during active myelinogenesis. We found that the interaction between QKI and MBP mRNA was negatively regulated by Src-PTK-dependent phosphorylation of QKI. During early myelin development, tyrosine phosphorylation of QKI in the developing myelin drastically declined, presumably leading to enhanced interactions between QKI and MBP mRNA, which was associated with the rapid accumulation of MBP mRNA and accelerated myelin production. Therefore, developmental regulation of Src-PTK-dependent tyrosine phosphorylation of QKI suggests a novel mechanism for accelerating CNS myelinogenesis via regulating mRNA metabolism.  相似文献   

13.
A number of genes that are induced by type-I interferons are also activated by one or more other inducers, including double-stranded RNA, viruses, interferon-gamma, interleukin-1 and tumor necrosis factor. However, these inducers can also activate the expression of type-I interferons. Thus, the activation of type-I interferon-inducible genes by these other inducers could be direct, or a secondary consequence of the induction of interferon. To distinguish between these possibilities, we have used cell lines lacking all type-I interferon genes to study the direct effect of potential inducers on the expression of 14 interferon-inducible human genes. We show that double-stranded RNA, virus, interferon-gamma or tumor necrosis factor-alpha can act directly to induce specific subsets of type-I interferon-inducible genes in the absence of any possible type-I interferon involvement. The cis-acting element which confers inducibility by type-I interferon has been shown in some cases to confer inducibility by interferon-gamma, double-stranded RNA or virus as well. However, not all promoters containing such an element respond to both interferon and other inducers. Thus, the ability of a given gene to respond to different inducers most likely depends on the exact nature and specific combination of cis-acting elements present in its promoter.  相似文献   

14.
15.
Current advances in the use of somatic cell hybrid systems have enhanced the value of these systems for studying eukaryotic cell functions. We have reviewed the use of somatic cells to investigate the human interferon system. It has been shown that interspecific heterokaryons and hybrid cells can produce interferon(s) of both parental types and may be protected from viral challenge by interferon(s) from either parent. Using mouse-human hybrid cells we have assigned a human gene(s) responsible for regulating interferon to chromosome 21 and genes involved in the production of human interferon to chromosomes 2 and 5. Our data also suggest possible assignment of a locus involved in control of interferon production to chromosome 16. Suggested further uses of the somatic cell system for interferon studies include study of the subunit structure of interferons and the development of hybrid lines that produce human interferon at high levels (interferon/somatic cell hybrids/human gene assignment.  相似文献   

16.
The overexpression of four different interferons, i.e., murine interferon α1 and human interferons α1, α8, and α21 was challenged in Escherichia coli. Synthetic genes coding for these interferons were designed, assembled, and cloned into the vector pET9a (using the NdeI and BamHI sites), placing interferon expression under the control of phage T7 promoter. Despite an intensive screening for optimal culture conditions, no interferon synthesis was observed using overexpression systems based on the regulatory elements of lac operon (e.g., in E. coli BL21DE3). On the contrary, high levels of interferon expression were detected in E. coli BL21AI, which chromosome contains the gene coding for phage T7 RNA polymerase under the control of the araBAD promoter. To analyze the reasons of this striking difference, the molecular events associated with the lack of interferon expression in E. coli BL21DE3 were studied, and murine interferon α1 was chosen as a model system. Surprisingly, it was observed that this interferon represses the synthesis of T7 RNA polymerase in E. coli BL21DE3 and, in particular, the expression of lac operon. In fact, by determining β‐galactosidase activity in E. coli BL21AI, a significantly lower LacZ activity was observed in cells induced to interferon synthesis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
The interferons are cytokines with antiviral, cell growth regulatory, and immunomodulatory activities. These activities are mediated by the proteins induced by the interferons. Earlier we described a gene cluster (the 200 cluster) consisting of at least six adjacent, interferon-activatable genes located next to the erythroid alpha-spectrin locus on murine chromosome 1. The genes of the cluster arose by repeated gene duplication and they specify proteins with pronounced sequence similarity. We have now raised polyclonal antibodies against a segment from one of these proteins (the 204 protein of 72 kD). Using these, we established that the 204 protein is a phosphoprotein whose level in cells from various murine lines can be increased up to 75-fold upon treatment with alpha interferon. Experiments involving fractionation of cell lysates and indirect immunofluorescence microscopy of control and interferon-treated cells revealed that the 204 protein is nucleolar and nucleoplasmic. This conclusion was confirmed by co-localization with B23, a known nucleolar protein. The 204 protein is the first interferon-induced protein found to be located in the nucleoli, the subcellular organelles of ribosomal RNA production and ribosome assembly. It remains to be seen whether the 204 protein affects any of these processes. Studies on 204 protein function should be facilitated by the availability of complete cDNA clones and the finding of cell lines in which the expression of this protein is impaired.  相似文献   

18.
Combined use of interferon inductor poly-IC and antibiotics (cycloheximide and actinomycin D) provided a significant increase (up to 1000 times) in interferon production by chick, mouse, monkey and human cells. Messenger RNA with matrix activity for interferon (mRNA-IF) was isolated from superinduced cells. On translation of mRNA-IF in homogenous and heterogenous cells the specificity of interferons produced was determined by the type of the cells from which mRNA-IF was isolated. Sedimentation analysis of various mRNA-IF revealed 2 peaks of activity: major (5--15S) and minor (25--30S).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号