首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to heterologous virus isolates.  相似文献   

2.
We investigated spatially variable selection in Ambystoma tigrinum virus (ATV) which causes frequent and geographically widespread epizootics of the tiger salamander, Ambystoma tigrinum. To test for evidence of selection, we sequenced several coding and noncoding regions from virus strains isolated from epizootics throughout western North America. Three of the sequenced regions contained homologues for genes putatively involved in host immune evasion and virulence: eIF‐2α, caspase activation and recruitment domain (CARD) and β‐OH‐steroid oxidoreductase. Selection analysis showed evidence of very strong purifying selection on eIF‐2α, purifying selection within certain viral clades on CARD and positive selection on β‐OH‐steroid oxidoreductase within certain clades. Analysis using multidivtime and Tajima’s relative rate tests indicate accelerated rates of evolution within clades associated with anthropogenic movement. These clades also demonstrate greater spatial variability in selection, suggesting a lack of local adaptation (i.e. locally adapted populations should exhibit little to no selection because of absent or reduced variation in fitness once a fitness optimum is reached). Increased transfer of non‐native viral strains to naïve salamander populations, in conjunction with local maladaptation as a result of local selection pressures, may explain the spread and emergence of ATV epizootics in A. tigrinum in western North America.  相似文献   

3.
Emerging infectious diseases are implicated in the declines and extinctions of amphibians worldwide. Ranaviruses in the family Iridoviridae are a global concern and have caused amphibian die-offs in wild populations in North America, Europe, South America, and in commercial populations in Asia and South America. The movement of amphibians for bait, food, pets, and research provides a route for the introduction of ranaviruses into naive and potentially endangered species. In this report, we demonstrate that the California tiger salamander, Ambystoma californiense, is susceptible to Ambystoma tigrinum virus (ATV). This virus has not been previously reported in California tiger salamander, but observed mortality in experimentally infected animals suggests that California tiger salamander populations could be adversely affected by an ATV introduction.  相似文献   

4.
Global wildlife trade exacerbates the spread of nonindigenous species. Pathogens also move with hosts through trade and often are released into naïve populations with unpredictable outcomes. Amphibians are moved commercially for pets, food, bait, and biomedicine, and are an excellent model for studying how wildlife trade relates to pathogen pollution. Ranaviruses are amphibian pathogens associated with annual population die-offs; multiple strains of tiger salamander ranaviruses move through the bait trade in the western United States. Ranaviruses infect amphibians, reptiles, and fish and are of additional concern because they can switch hosts. Tiger salamanders are used as live bait for freshwater fishing and are a potential source for ranaviruses switching hosts from amphibians to fish. We experimentally injected largemouth bass with a bait trade tiger salamander ranavirus. Largemouth bass became infected but exhibited no signs of disease or mortality. Amphibian bait ranaviruses have the potential to switch hosts to infect fish, but fish may act as dead-end hosts or nonsymptomatic carriers, potentially spreading infection as a result of trade.  相似文献   

5.
Ambystoma tigrinum virus (ATV) is a lethal virus originally isolated from Sonora tiger salamanders Ambystoma tigrinum stebbinsi in the San Rafael Valley in southern Arizona. USA. ATV is implicated in several salamander epizootics. We attempted to transmit ATV experimentally to fish and amphibians by injection, water bath exposure, or feeding to test whether ATV can cause clinical signs of infection or be recovered from exposed individuals that do not show clinical signs. Cell culture and polymerase chain reaction of the viral major capsid protein gene were used for viral detection. Salamanders and newts became infected with ATV and the virus was recovered from these animals, but virus could not be recovered from any of the frogs or fish tested. These results suggest that ATV may only infect urodeles and that fish and frogs may not be susceptible to ATV infection.  相似文献   

6.
Infectious diseases are a growing threat to biodiversity, in many cases because of synergistic effects with habitat loss, environmental contamination, and climate change. Emergence of pathogens as new threats to host populations can also arise when novel combinations of hosts and pathogens are unintentionally brought together, for example, via commercial trade or wildlife relocations and reintroductions. Chytrid fungus (Batrachochytrium dendrobatidis) and amphibian ranaviruses (family Iridoviridae) are pathogens implicated in global amphibian declines. The emergence of disease associated with these pathogens appears to be at least partly related to recent translocations over large geographic distances. We experimentally examined the outcomes of novel combinations of host populations and pathogen strains using the amphibian ranavirus Ambystoma tigrinum virus (ATV) and barred tiger salamanders (Ambystoma mavortium, formerly considered part of the Ambystoma tigrinum complex). One salamander population was highly resistant to lethal infections by all ATV strains, including its own strain, and mortality rates differed among ATV strains according to salamander population. Mortality rates in novel pairings of salamander population and ATV strain were not predictable based on knowledge of mortality rates when salamander populations were exposed to their own ATV strain. The underlying cause(s) for the differences in mortality rates are unknown, but local selection pressures on salamanders, viruses, or both, across the range of this widespread host–pathogen system are a plausible hypothesis. Our study highlights the need to minimize translocations of amphibian ranaviruses, even among conspecifc host populations, and the importance of considering intraspecific variation in endeavors to manage wildlife diseases.  相似文献   

7.
All iridovirus was confirmed to be the cause of an epizootic in larval and adult tiger salamanders (Ambystoma tigrinum diaboli) from four separate ponds in southern Saskatchewan (Canada) during the summer of 1997. This organism also is suspected, based on electron microscopic findings, to be the cause of mortality of larval tiger salamanders in a pond over 200 km to the north during the same year. Salamanders developed a generalized viremia which resulted in various lesions including: necrotizing, vesicular and ulcerative dermatitis; gastrointestinal ulceration; and necrosis of hepatic, splenic, renal, lymphoid, and hematopoietic tissues. In cells associated with these lesions, large lightly basophilic cytoplasmic inclusions and vacuolated nuclei with marginated chromatin were consistently found. Virus was isolated from tissue homogenates of infected salamanders following inoculation of epithelioma papilloma cyprini (EPC) cells. The virus, provisionally designated Regina ranavirus (RRV), was initially identified as an iridovirus by electron microscopy. Subsequent molecular characterization, including partial sequence analysis of the major capsid protein (MCP) gene, confirmed this assignment and established that RRV was a ranavirus distinct from frog virus 3 (FV3) and other members of the genus Ranavirus. Intraperitoneal inoculation of 5 x 10(6.23) TCID50 of the field isolate caused mortality in inoculated salamanders at 13 days post infection. Field, clinical, and molecular studies jointly suggest that the etiological agent of recent salamander mortalities is a highly infectious novel ranavirus.  相似文献   

8.
Currently no comparative studies exist on helminth and leech community structure among sympatric anuran tadpoles and salamander larvae. During June-August 2007-2009, we examined 50 bullfrog tadpoles, Rana catesbeiana , 50 barred tiger salamander larvae, Ambystoma mavortium , and 3 species of snails from Nevens Pond, Keith County, Nebraska for helminth and leech infections. The helminth and leech compound community of this larval amphibian assemblage consisted of at least 7 species, 4 in bullfrog tadpoles and 4 in barred tiger salamander larvae. Bullfrog tadpoles were infected with 2 species of nematodes ( Gyrinicola batrachiensis and Spiroxys sp.) and 2 types of metacercariae ( Telorchis sp. and echinostomatids), whereas barred tiger salamander larva were infected with 1 species of leech ( Placobdella picta ), 2 species of adult trematodes ( Telorchis corti and Halipegus sp.), and 1 species of an unidentified metacercaria. The component community of bullfrog tadpoles was dominated by helminths acquired through active penetration, or incidentally ingested through respiratory currents, or both, whereas the component community of larval salamanders was dominated by helminths acquired through ingestion of intermediate hosts (χ2 = 3,455.00, P < 0.00001). Differences in amphibian larval developmental time (2-3 yr for bullfrog tadpoles versus 2-5 mo for salamander larvae), the ephemeral nature of intermediate hosts in Nevens Pond, and the ability of bullfrog tadpole to eliminate echinostome infections had significant effects on mean helminth species richness among amphibian species and years (t = 12.31, P < 0.0001; t = 2.09, P = 0.04). Differences in herbivorous and carnivorous diet and time to metamorphosis among bullfrog tadpoles and barred tiger salamander larvae were important factors in structuring helminth communities among the larval stages of these 2 sympatric amphibian species, whereas size was important in structuring helminth and leech communities in larval salamanders, but not in bullfrog tadpoles.  相似文献   

9.
Chytridiomycosis caused by Batrachochytrium dendrobatidis (Chytridiomycota) has been implicated in declines of amphibian populations on four continents. We have developed a sensitive and specific polymerase chain reaction-based assay to detect this pathogen. We isolated B. dendrobatidis from captive and wild amphibians collected across North America and sequenced the internal transcribed spacer regions of the rDNA cassette of multiple isolates. We identified two primers (Bd1a and Bd2a) that are specific to B. dendrobatidis under amplification conditions described in this study. DNA amplification with Bd1a/Bd2a primers produced a fragment of approximately 300 bp from B. dendrobatidis DNA but not from DNA of other species of chytrids or common soil fungi. The assay detected 10 zoospores or 10 pg of DNA from B. dendrobatidis and detected infections in skin samples from a tiger salamander (Ambystoma tigrinum), boreal toads (Bufo boreas), Wyoming toads (Bufo baxteri), and smooth-sided toads (Bufo guttatus). This assay required only small samples of skin and can be used to process a large number of samples.  相似文献   

10.
Ephemeral pools, which can have high animal biomass and low dissolved oxygen, may be prone to nitrite accumulation. As such, it is important to understand how exposure to nitrite might affect development and growth of amphibians that breed in these ephemeral pools. Wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and tadpoles and young larvae were exposed to elevated concentrations of nitrite derived from sodium nitrite: 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg l−1 NO2–N. Increasing nitrite exposure slowed embryonic and larval development in both the eastern tiger salamander and the wood frog, reduced growth in tiger salamander embryos and larvae, and delayed metamorphosis in the wood frog. At concentrations less than 2 mg l−1 NO2–N nitrite delayed hatching, and at concentrations above 2 mg l−1 time to hatching decreased causing more individuals to hatch at less developed stages. Nitrite also increased asynchrony in tiger salamander hatching. The sublethal effects of nitrite on amphibian development, growth and hatching could have serious repercussions on amphibian fitness in ephemeral environments. Potential increases in mortality on field populations caused by sublethal effects of nitrite are discussed.  相似文献   

11.
Strain variation in an emerging iridovirus of warm-water fishes   总被引:2,自引:0,他引:2       下载免费PDF全文
Although iridoviruses vary widely within and among genera with respect to their host range and virulence, variation within iridovirus species has been less extensively characterized. This study explores the nature and extent of intraspecific variation within an emerging iridovirus of North American warm-water fishes, largemouth bass virus (LMBV). Three LMBV isolates recovered from three distinct sources differed genetically and phenotypically. Genetically, the isolates differed in the banding patterns generated from amplified fragment length polymorphism analysis but not in their DNA sequences at two loci of different degrees of evolutionary stability. In vitro, the isolates replicated at identical rates in cell culture, as determined by real-time quantitative PCR of viral particles released into suspension. In vivo, the isolates varied over fivefold in virulence, as measured by the rate at which they induced mortality in juvenile largemouth bass. This variation was reflected in the viral loads of exposed fish, measured using real-time quantitative PCR; the most virulent viral strain also replicated to the highest level in fish. Together, these results justify the designation of these isolates as different strains of LMBV. Strain variation in iridoviruses could help explain why animal populations naturally infected with iridovirus pathogens vary so extensively in their clinical responses to infection. The results of this study are especially relevant to emerging iridoviruses of aquaculture systems and wildlife.  相似文献   

12.
In 2003, 13 isolates of iridovirus were obtained from cultured flounders Paralichthys olivaceus during epizootics in Korea. The full open reading frames (ORFs) encoding the major capsid protein (MCP) (1362 bp) from the 13 flounder iridoviruses (FLIVs) were sequenced and the deduced amino acid sequences were phylogenetically analyzed. Phylogenetic analysis of the MCP revealed that all 13 FLIVs were the same species as rock bream iridovirus (RBIV), red sea bream iridovirus (RSIV), and infectious spleen and kidney necrosis virus (ISKNV), and were grouped into an unknown genus which was different from the 2 genera known to infect fish, Ranavirus and Lymphocystivirus. This is the first report on the isolation and phylogenetic analysis of the iridovirus of unknown genus from flounders during epizootics.  相似文献   

13.
Phylogenetic relationships of 36 nymphophiline species representing 10 genera were inferred from mtCOI sequence data and compared to recent morphology-based classifications of this group. Parsimony and maximum likelihood analyses of the molecular data set suggested monophyly of the North American nymphophilines and a sister or otherwise close relationship between this fauna and a European species assigned to the subfamily. Results also supported a previously hypothesized close relationship between the predominantly freshwater nymphophilines and the brackish-water genus Hydrobia . Our analyses resolved a North American nymphophiline subclade composed of Floridobia , Nymphophilus , and Pyrgulopsis , and depicted the remaining North American genera ( Cincinnatia , Marstonia , Notogillia , Rhapinema , Spilochlamys , Stiobia ) as either a monophyletic or paraphyletic group. Two of the large North American genera ( Floridobia , Marstonia ) were supported as monophyletic groups while monophyly of Pyrgulopsis , a western North American group containing > 100 species, was equivocal. North American nymphophiline phylogeny implies that vicariance of eastern and western North American groups was followed by a secondary invasion of eastern coastal areas from the west. We attribute this to dispersal of salt-tolerant progenitors along the Gulf of Mexico coast  相似文献   

14.
Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and non-native fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. We then applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy. These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.  相似文献   

15.
Population declines caused by natural and anthropogenic factors can quickly erode genetic diversity in natural populations. In this study, we examined genetic variation within 10 tiger salamander populations across northern Yellowstone National Park in Wyoming and Montana, USA using eight microsatellite loci. We tested for the genetic signature of population decline using heterozygosity excess, shifts in allele frequencies, and low ratios of allelic number to allelic size range (M-ratios). We found different results among the three tests. All 10 populations had low M-ratios, five had shifts in allele frequencies and only two had significant heterozygosity excesses. These results support theoretical expectations of different temporal signatures among bottleneck tests and suggest that both historical fish stocking, recent, sustained drought, and possibly an emerging amphibian disease have contributed to declines in effective population size.  相似文献   

16.
Banding differences between tiger salamander and axolotl chromosomes   总被引:1,自引:0,他引:1  
The Hoechst 33258 - Giemsa banding patterns were compared on axolotl (Ambystoma mexicanum Shaw) and axolotl - tiger salamander (Ambystoma tigrinum Green) species hybrid prophase chromosomes. Approximately 369 bands per haploid chromosome set were seen in the axolotl and about 344 bands in the tiger salamander. In the haploid set of 14 chromosomes, chromosome 3 has a constant short or q-arm terminal constriction at the location of the nucleolar organizer. Chromosomes 14 Z and W carry the sex determinants, the female being the heterogametic sex (ZW). The banding patterns of chromosomes 1, 6, 11, and 14 Z of the two species are apparently indistinguishable by our banding method. In the axolotl, chromosome 9 has a small long or p-arm terminal deletion. In the tiger salamander, the remaining 10 chromosomes have terminal or internal deletions. No translocations or inversions seem to have occurred since the gene pool separation of the two closely related species.  相似文献   

17.
We examined the distribution of iridoviruses in 10 freshwater ornamental fish species hatched in Korea and imported from other Asian countries using both 1-step and 2-step polymerase chain reation (PCR). None of the 10 fish species analyzed were free of iridovirus as shown by 2-step PCR positive results, and 3 species yielded 1-step PCR positive results with associated mortality. Cloned PCR amplicons of the adenosine triphosphatase (ATPase) and major capsid protein (MCP) genes in genomic DNA of iridovirus showed the same nucleotide sequences as that of infectious spleen and kidney necrosis virus (ISKNV) isolated from the mandarinfish Siniperca chuatsi. These results indicate the presence of ISKNV disease in various ornamental fish as new host species and that the disease is widespread throughout different Asian countries including Korea, Singapore and China. Such infections were either clinical with associated mortality (and 1-step PCR positive) or asymptomatic in fish that were externally healthy (and only positive in 2-step PCR). Molecular analyses of the K2 region performed on iridovirus samples isolated from freshwater ornamental fishes revealed deletion/insertion of repetitive sequences of various lengths (42 to 339 bp), depending on the ISKNV isolates, without substitutions. Experimental infection of pearl gourami Trichogaster leeri and silver gourami T. microlepis with a tissue homogenate of pearl gourami infected by ISKNV induced 70 and 20% cumulative mortalities in the pearl and silver gourami, respectively.  相似文献   

18.
Megalocytiviruses have been associated with epizootics resulting in significant economic losses in public aquaria and food-fish and ornamental fish industries, as well as threatening wild fish stocks. The present report describes characteristics of the first megalocytivirus from a wild temperate North American fish, the threespine stickleback Gasterosteus aculeatus. Moribund and dead fish sampled after transfer to quarantine for an aquarium exhibit had amphophilic to basophilic intracytoplasmic inclusions (histopathology) and icosahedral virions (transmission electron microscopy) consistent with an iridovirus infection. Phylogenetic analyses of the major capsid, ATPase, and DNA polymerase genes confirmed the virus as the first known member of the genus Megalocytivirus (family Iridoviridae) from a gasterosteid fish. The unique biologic and genetic properties of this virus are sufficient to establish a new Megalocytivirus species to be formally known as the threespine stickleback iridovirus (TSIV). The threespine stickleback is widely distributed throughout the northern hemisphere in both freshwater and estuarine environments. The presence of megalocytiviruses with broad host specificity and detrimental economic and ecologic impacts among such a widely dispersed fish species indicates the need for sampling of other stickleback populations as well as other North American sympatric marine and freshwater ichthyofauna.  相似文献   

19.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

20.
Summary The potential effects of multiple factors structuring certain larval amphibian communities were studied using a pen experiment in a natural pond. Potential factors (predation and competition from other species) were allowed to act in a stepwise fashion such that their relative importance could be evaluated. Based on a previous study, it was hypothesized that predation by Ambystoma salamander larvae on other larval amphibian species would be the most important factor. Survival of Ambystoma jeffersonianum salamander larvae and Rana sylvatica tadpoles was significantly depressed only by Ambystoma opacum predation. Survival of Ambystoma maculatum salamander larvae was significantly greater in the absence of both A. opacum and A. jeffersonianum predators. The virtual elimination of Hyla chrysoscelis larvae in all treatments also can be largely attributed to Ambystoma predation. Thus, Ambystoma predation was the dominant factor determining larval survival of four amphibian prey species in the experimental communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号