首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Family X DNA polymerases (PolXs) are involved in DNA repair. Their binding to gapped DNAs relies on two conserved helix-hairpin-helix motifs, one located at the 8-kDa domain and the other at the fingers subdomain. Bacterial/archaeal PolXs have a specifically conserved third helix-hairpin-helix motif (GFGxK) at the fingers subdomain whose putative role in DNA binding had not been established. Here, mutagenesis at the corresponding residues of Bacillus subtilis PolX (PolXBs), Gly130, Gly132 and Lys134 produced enzymes with altered DNA binding properties affecting the three enzymatic activities of the protein: polymerization, located at the PolX core, 3′-5′ exonucleolysis and apurinic/apyrimidinic (AP)-endonucleolysis, placed at the so-called polymerase and histidinol phosphatase domain. Furthermore, we have changed Lys192 of PolXBs, a residue moderately conserved in the palm subdomain of bacterial PolXs and immediately preceding two catalytic aspartates of the polymerization reaction. The results point to a function of residue Lys192 in guaranteeing the right orientation of the DNA substrates at the polymerization and histidinol phosphatase active sites. The results presented here and the recently solved structures of other bacterial PolX ternary complexes lead us to propose a structural model to account for the appropriate coordination of the different catalytic activities of bacterial PolXs.  相似文献   

2.
3.
The B-subunits associated with the replicative DNA polymerases are conserved from Archaea to humans, whereas the corresponding catalytic subunits are not related. The latter belong to the B and D DNA polymerase families in eukaryotes and archaea, respectively. Sequence analysis places the B-subunits within the calcineurin-like phosphoesterase superfamily. Since residues implicated in metal binding and catalysis are well conserved in archaeal family D DNA polymerases, it has been hypothesized that the B-subunit could be responsible for the 3′-5′ proofreading exonuclease activity of these enzymes. To test this hypothesis we expressed Methanococcus jannaschii DP1 (MjaDP1), the B-subunit of DNA polymerase D, in Escherichia coli, and demonstrate that MjaDP1 functions alone as a moderately active, thermostable, Mn2+-dependent 3′-5′ exonuclease. The putative polymerase subunit DP2 is not required. The nuclease activity is strongly reduced by single amino acid mutations in the phosphoesterase domain indicating the requirement of this domain for the activity. MjaDP1 acts as a unidirectional, non-processive exonuclease preferring mispaired nucleotides and single-stranded DNA, suggesting that MjaDP1 functions as the proofreading exonuclease of archaeal family D DNA polymerase.  相似文献   

4.
The B-subunits of replicative DNA polymerases belong to the superfamily of calcineurin-like phosphoesterases and are conserved from Archaea to humans. Recently we and others have shown that the B-subunit (DP1) of the archaeal family D DNA polymerase is responsible for proofreading 3'-5' exonuclease activity. The similarity of B-subunit sequences implies a common fold, but since the key catalytic and metal binding residues of the phosphoesterase domain are disrupted in the eukaryotic B-subunits, their common function has not been identified. To study the structure and activities of B-subunits in more detail, we expressed 13 different recombinant B-subunits in Escherichia coli. We found that the solubility of a protein could be predicted from the calculated GRAVY score. These scores were useful for the selection of proteins for successful expression. We optimized the expression and purification of Methanocaldococcus (Methanococcus) jannaschii DP1 of DNA polymerase D (MjaDP1) and show that the protein co-purifies with a thermostable nuclease activity. Truncation of the protein indicates that the N-terminus (aa 1-134) is not needed for catalysis. The C-terminal part of the protein containing both the calcineurin-like phosphoesterase domain and the OB-fold is sufficient for the nuclease activity.  相似文献   

5.
The complete genome sequence of the hyperthermophilic archaeon Pyrococcus abyssi revealed the presence of a family B DNA polymerase (Pol I) and a family D DNA polymerase (Pol II). To extend our knowledge about euryarchaeal DNA polymerases, we cloned the genes encoding these two enzymes and expressed them in Escherichia coli. The DNA polymerases (Pol I and Pol II) were purified to homogeneity and characterized. Pol I had a molecular mass of approximately 90 kDa, as estimated by SDS/PAGE. The optimum pH and Mg(2+) concentration of Pol I were 8.5-9.0 and 3 mm, respectively. Pol II is composed of two subunits that are encoded by two genes arranged in tandem on the P. abyssi genome. We cloned these genes and purified the Pol II DNA polymerase from an E. coli strain coexpressing the cloned genes. The optimum pH and Mg(2+) concentration of Pol II were 6.5 and 15-20 mm, respectively. Both P. abyssi Pol I and Pol II have associated 3'-->5' exonuclease activity although the exonuclease motifs usually found in DNA polymerases are absent in the archaeal family D DNA polymerase sequences. Sequence analysis has revealed that the small subunit of family D DNA polymerase and the Mre11 nucleases belong to the calcineurin-like phosphoesterase superfamily and that residues involved in catalysis and metal coordination in the Mre11 nuclease three-dimensional structure are strictly conserved in both families. One hypothesis is that the phosphoesterase domain of the small subunit is responsible for the 3'-->5' exonuclease activity of family D DNA polymerase. These results increase our understanding of euryarchaeal DNA polymerases and are of importance to push forward the complete understanding of the DNA replication in P. abyssi.  相似文献   

6.
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.  相似文献   

7.
Genome replication generally requires primases, which synthesize an initial oligonucleotide primer, and DNA polymerases, which elongate the primer. Primase and DNA polymerase activities are combined, however, in newly identified replicases from archaeal plasmids, such as pRN1 from Sulfolobus islandicus. Here we present a structure-function analysis of the pRN1 primase-polymerase (prim-pol) domain. The crystal structure shows a central depression lined by conserved residues. Mutations on one side of the depression reduce DNA affinity. On the opposite side of the depression cluster three acidic residues and a histidine, which are required for primase and DNA polymerase activity. One acidic residue binds a manganese ion, suggestive of a metal-dependent catalytic mechanism. The structure does not show any similarity to DNA polymerases, but is distantly related to archaeal and eukaryotic primases, with corresponding active-site residues. We propose that archaeal and eukaryotic primases and the prim-pol domain have a common evolutionary ancestor, a bifunctional replicase for small DNA genomes.  相似文献   

8.
Eukaryotes and archaea both possess multiple genes coding for family B DNA polymerases. In animals and fungi, three family B DNA polymerases, alpha, delta, and epsilon, are responsible for replication of nuclear DNA. We used a PCR-based approach to amplify and sequence phylogenetically conserved regions of these three DNA polymerases from Giardia intestinalis and Trichomonas vaginalis, representatives of early-diverging eukaryotic lineages. Phylogenetic analysis of eukaryotic and archaeal paralogs suggests that the gene duplications that gave rise to the three replicative paralogs occurred before the divergence of the earliest eukaryotic lineages, and that all eukaryotes are likely to possess these paralogs. One eukaryotic paralog, epsilon, consistently branches within archaeal sequences to the exclusion of other eukaryotic paralogs, suggesting that an epsilon-like family B DNA polymerase was ancestral to both archaea and eukaryotes. Because crenarchaeote and euryarchaeote paralogs do not form monophyletic groups in phylogenetic analysis, it is possible that archaeal family B paralogs themselves evolved by a series of gene duplications independent of the gene duplications that gave rise to eukaryotic paralogs.   相似文献   

9.
Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. We analyzed the structure of the N-terminal 200 amino-acid regulatory region of the small subunit by NMR and revealed that the N-terminal ∼70 amino-acid region is folded. The structure consists of a four-α-helix bundle including a short parallel β-sheet, which is similar to the N-terminal regions of the B subunits of human DNA polymerases α and ε, establishing evolutionary relationships among these archaeal and eukaryotic polymerases. We observed monomer-dimer equilibrium of this domain, which may be related to holoenzyme architecture and/or functional regulation.  相似文献   

10.
The eukaryotic replicative DNA polymerases (Pol α, δ and ?) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.  相似文献   

11.
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation.The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases.We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.  相似文献   

12.
Archaea is now recognized as the third domain of life. Since their discovery, much effort has been directed towards understanding the molecular biology and biochemistry of Archaea. The objective is to comprehend the complete structure and the depth of the phylogenetic tree of life. DNA replication is one of the most important events in living organisms and DNA polymerase is the key enzyme in the molecular machinery which drives the process. All archaeal DNA polymerases were thought to belong to family B. This was because all of the products of pol genes that had been cloned showed amino acid sequence similarities to those of this family, which includes three eukaryal DNA replicases and Escherichia coli DNA polymerase II. Recently, we found a new heterodimeric DNA polymerase from the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for the subunits of this DNA polymerase are conserved in the euryarchaeotes whose genomes have been completely sequenced. The biochemical characteristics of the novel DNA polymerase family suggest that its members play an important role in DNA replication within euryarchaeal cells. We review here our current knowledge on DNA polymerases in Archaea with emphasis on the novel DNA polymerase discovered in Euryarchaeota.  相似文献   

13.
The gene encoding DNA polymerase alpha from Plasmodium falciparum.   总被引:2,自引:1,他引:1       下载免费PDF全文
The gene encoding DNA polymerase alpha from the human malaria parasite Plasmodium falciparum has been sequenced and characterised. The deduced amino acid sequence possesses the seven sequence motifs which characterise eukaryotic replicative DNA polymerases (I-VII) and four of five motifs (A-E) identified in alpha DNA polymerases. The predicted protein also contains sequences which are reminiscent of Plasmodium proteins but absent from other DNA polymerases. These include four blocks of additional amino acids interspersed with the conserved motifs of the DNA polymerases, four asparagine rich sequences and a novel carboxy-terminal extension. Repetitive sequences similar to those found in other malarial proteins are also present. cDNA-directed PCR was used to establish the presence of these features in the approximately 7kb mRNA. The coding sequence contains a single intron. The gene for DNAPol alpha is located on chromosome 4 and is transcribed in both asexual and sexual erythrocytic stages of the parasite.  相似文献   

14.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

15.
A genetic look at the active site of RNA polymerase III   总被引:1,自引:0,他引:1       下载免费PDF全文
rpc160-112, a mutant of the RNA polymerase III active site, is corrected in vivo by six second-site mutants obtained by random mutagenesis. These mutants introduce single-site amino acid replacements at the two large subunits of the enzyme. The mutated motifs are conserved in RNA polymerases I and II and, for some of them, in the bacterial enzyme, thus delineating key elements of the active site in eukaryotic RNA polymerases.  相似文献   

16.
17.
18.
Omi R  Goto M  Miyahara I  Manzoku M  Ebihara A  Hirotsu K 《Biochemistry》2007,46(44):12618-12627
Monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8, which catalyzes the dephosphorylation of l-histidinol phosphate, belongs to the PHP family, together with the PHP domain of bacterial DNA polymerase III and family X DNA polymerase. We have determined the structures of the complex with a sulfate ion, the complex with a phosphate ion, and the unliganded form at 1.6, 2.1, and 1.8 A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of a distorted (betaalpha)7 barrel with one linker and one C-terminal tail. Three metal sites located on the C-terminal side of the barrel are occupied by Fe1, Fe2, and Zn ions, respectively, forming a trinuclear metal center liganded by seven histidines, one aspartate, one glutamate, and one hydroxide with two Fe ions bridged by the hydroxide. In the complexes, the sulfate or phosphate ion is coordinated to three metal ions, resulting in octahedral, trigonal bipyramidal, and tetrahedral geometries around the Fe1, Fe2, and Zn ions, respectively. The ligand residues are derived from the four motifs that characterize the PHP family and from two motifs conserved in histidinol phosphate phosphatases. The (betaalpha)7 barrel and the metal cluster are closely related in nature and architecture to the (betaalpha)8 barrel and the mononuclear or dinuclear metal center in the amidohydrolase superfamily, respectively. The coordination behavior of the phosphate ion toward the metal center supports the mechanism in which the bridging hydroxide makes a direct attack on the substrate phosphate tridentately bound to the two Fe ions and Zn ion to hydrolyze the phosphoester bond.  相似文献   

19.
Monoclonal antibodies directed against the alpha subunit of the DNA polymerase III holoenzyme (1) of E. coli were tested for cross-reactivity with a variety of polymerases. We found that one monoclonal antibody bound to E. coli DNA polymerase I as well as to DNA polymerase III. A weaker, but specific, interaction was also detected with T4 DNA polymerase. We exploited the proteolysis procedure developed by Setlow, Brutlag and Kornberg (2) to determine which domain of DNA polymerase I contained the conserved epitope. Contrary to expectations, it was not found in the polymerase domain, but in the 5'----3' exonuclease domain. This reveals a sequence or structure, sufficiently important to be conserved among these polymerases, that is not directly involved in the polymerization reaction.  相似文献   

20.
An attempt to unify the structure of polymerases   总被引:48,自引:0,他引:48  
With the great availability of sequences from RNA- and DNA-dependent RNA and DNA polymerases, it has become possible to delineate a few highly conserved regions for various polymerase types. In this work a DNA polymerase sequence from bacteriophage SPO2 was found to be homologous to the polymerase domain of the Klenow fragment of polymerase I from Escherichia coli, which is known to be closely related to those from Staphylococcus pneumoniae, Thermus aquaticus and bacteriophages T7 and T5. The alignment of the SPO2 polymerase with the other five sequences considerably narrowed the conserved motifs in these proteins. Three of the motifs matched reasonably all the conserved motifs of another DNA polymerase type, characterized by human polymerase alpha. It is also possible to find these three motifs in monomeric DNA-dependent RNA polymerases and two of them in DNA polymerase beta and DNA terminal transferases. These latter two motifs also matched two of the four motifs recently identified in 84 RNA-dependent polymerases. From the known tertiary architecture of the Klenow fragment of E. coli pol I, a spatial arrangement can be implied for these motifs. In addition, numerous biochemical experiments suggesting a role for the motifs in a common function (dNTP binding) also support these inferences. This speculative hypothesis, attempting to unify polymerase structure at least locally, if not globally, under the pol I fold, should provide a useful model to direct mutagenesis experiments to probe template and substrate specificity in polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号