首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
The structural analysis of monoclonal antibodies (mAbs) against the alpha subunit of the high affinity IgE receptor (FcepsilonRIalpha) is an alternative approach to obtaining information for the design of inhibitors that will block complementary interaction between IgE and FcepsilonRIalpha and to analyzing the various biological effects induced by anti-FcepsilonRIalpha autoantibodies in chronic urticaria. In this study, epitopes for mouse anti-human FcepsilonRIalpha mAbs and primary structures of variable regions of the mAbs were analyzed. Three mAbs inhibitory for IgE-binding reacted to the deletion mutants of FcepsilonRIalpha containing the whole second immunoglobulin-like domain as well as IgE did. On the other hand, two uninhibitory mAbs reacted to those containing the whole first immunoglobulin-like domain. The cDNAs for variable regions of the five mAbs were cloned and sequenced. Two inhibitory mouse/human chimeric antibodies were expressed in COS7 cells and bound to Chinese hamster ovary transfectant cells expressing FcepsilonRI (CHO/alphabetagamma), and these inhibited the binding of IgE to CHO/alphabetagamma cells.  相似文献   

2.
Using mAb technology (Wayner, E. A., W. G. Carter, R. Piotrowicz, and T. J. Kunicki. 1988. J. Cell Biol. 107:1881-1891), we have identified a new fibronectin receptor that is identical to the integrin receptor alpha 4 beta 1. mAbs P3E3, P4C2, and P4G9 recognized epitopes on the alpha 4 subunit and completely inhibited the adhesion of peripheral blood and cultured T lymphocytes to a 38-kD tryptic fragment of plasma fibronectin containing the carboxy-terminal Heparin II domain and part of the type III connecting segment (IIICS). The ligand in IIICS for alpha 4 beta 1 was the CS-1 region previously defined as an adhesion site for melanoma cells. The functionally defined mAbs to alpha 4 partially inhibited T lymphocyte adhesion to intact plasma fibronectin and had no effect on their attachment to an 80-kD tryptic fragment containing the RGD (arg-gly-asp) adhesion sequence. mAbs (P1D6 and P1F8) to the previously described fibronectin receptor, alpha 5 beta 1, completely inhibited T lymphocyte adhesion to the 80-kD fragment but had no effect on their attachment to the 38-kD fragment or to CS-1. Both alpha 4 beta 1 and alpha 5 beta 1 localized to focal adhesions when fibroblasts that express these receptors were grown on fibronectin-coated surfaces. These findings demonstrated a specific interaction of both receptors with fibronectin at focal contacts. In conclusion, these findings show clearly that cultured T lymphocytes use two independent receptors during attachment to fibronectin and that (a) alpha 5 beta 1 is the receptor for the RGD containing cell adhesion domain, and (b) alpha 4 beta 1 is the receptor for a carboxy-terminal cell adhesion region containing the Heparin II and IIICS domains. Furthermore, these data also show that T lymphocytes express a clear preference for a region of molecular heterogeneity in IIICS (CS-1) generated by alternative splicing of fibronectin pre-mRNA and that alpha 4 beta 1 is the receptor for this adhesion site.  相似文献   

3.
CD151, a member of the tetraspanin family of proteins, forms a stable complex with integrin alpha 3 beta 1 and regulates integrin-mediated cell-substrate adhesion. However, the molecular basis of the stable association of CD151 with integrin alpha 3 beta 1 remains poorly understood. In the present study, we show that a panel of anti-human CD151 mAbs (monoclonal antibodies) could be divided into three groups on the basis of their abilities to co-immunoprecipitate integrin alpha 3: Group-1 mAbs were devoid of sufficient activities to co-precipitate integrin alpha 3 under both low- and high-stringency detergent conditions; Group-2 mAbs co-precipitated integrin alpha 3 under low-stringency conditions; and Group-3 mAbs exhibited strong co-precipitating activities under both conditions. Group-1 mAbs in particular exhibited increased reactivity toward integrin alpha 3 beta 1-unbound CD151, indicating that the binding sites for Group-1 mAbs are partly blocked by bound integrin alpha 3 beta 1. Epitope mapping using a series of CD151 mutants with substitutions at amino acid residues that are not conserved between human and mouse CD151 revealed that Gly(176)/Gly(177), Leu(191) and Gln(194) comprise epitopes characteristic of Group-1 mAbs. Replacement of short peptide segments, each containing one of these epitopes, with those of other tetraspanins lacking stable interactions with integrin alpha 3 beta 1 demonstrated that the segment from Cys(185) to Cys(192), including Leu(191), was involved in the stable association of CD151 with integrin alpha 3 beta 1, as was the Gln(194)-containing QRD peptide. Taken together these results indicate that two consecutive segments including two Group-1 epitopes, Leu(191) and Gln(194), comprise an interface between CD151 and integrin alpha 3 beta 1, and, along with the epitope including Gly(176)/Gly(177), are concealed by bound integrin.  相似文献   

4.
Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. The synthetic peptides used in this study were approximately 20 residue long, overlapped each other by 4-6 residues, and corresponded to the complete sequence of Torpedo AChR alpha subunit. Also, overlapping peptides, corresponding to the sequence segments of each Torpedo AChR subunit homologous to alpha 166-203, were synthesized. alpha-BTX bound to a peptide containing the sequence alpha 181-200 and also, albeit to a lesser extent, to a peptide containing the sequence alpha 55-74. WF6 bound to alpha 181-200 and to a lesser extent to alpha 55-74 and alpha 134-153. The two other mAbs predominantly bound to alpha 55-74, and to a lesser extent to alpha 181-200. Peptides alpha 181-200 and alpha 55-74 both inhibited binding of 125I-alpha-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound alpha-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR alpha subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region. Such a structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody-antigen complexes [reviewed in Davies et al. (1988)].  相似文献   

5.
The interaction of Escherichia coli F1 ATPase (ECF1) with several different monoclonal antibodies (mAbs) specific for the alpha subunit has been examined. The epitopes for each of the mAbs have been localized by using molecular biological approaches to generate fragments of the alpha subunit. The binding of several of the mAbs has also been examined by cryoelectron microscopy of ECF1 Fab complexes. One of the mAbs, alpha II, bound in the region Asn 109-Val 153 without affecting ATPase activity. Most of the mAbs bound in the C-terminal third of the alpha subunit. MAb alpha 1 bound between residues Gln 443 and Trp 513. This mAb activated ATPase activity and was visualized in cryoelectron microscopy, superimposed on the alpha subunit, indicating that the epitope was on the top or bottom of ECF1 in the hexagonal projection. Other mAbs to the C-terminus, including alpha D which also activated the enzyme, reacted between Gly 371 and Trp 513 but failed to bind to small overlapping fragments within this sequence. The epitopes for these mAbs are probably formed by the folded polypeptide which occurs only in Western analysis when long stretches of the alpha subunit are present, suggesting that the C-terminus of alpha is a self-folding domain. In cryoelectron microscopy, Fab fragments for alpha D were seen extending from the sides of the ECF1 complex in hexagonal projection.  相似文献   

6.
The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible.  相似文献   

7.
The cysteine-rich repeats in the stalk region of integrin beta subunits appear to convey signals impinging on the cytoplasmic domains to the ligand-binding headpiece of integrins. We have examined the functional properties of mAbs to the stalk region and mapped their epitopes, providing a structure-function map. Among a panel of 14 mAbs to the beta(2) subunit, one, KIM127, preferentially bound to alpha(L)beta(2) that was activated by mutations in the cytoplasmic domains, and by Mn(2+). KIM127 also bound preferentially to the free beta(2) subunit compared with resting alpha(L)beta(2). Activating beta(2) mutations also greatly enhanced binding of KIM127 to integrins alpha(M)beta(2) and alpha(X)beta(2). Thus, the KIM127 epitope is shielded by the alpha subunit, and becomes reexposed upon receptor activation. Three other mAbs, CBR LFA-1/2, MEM48, and KIM185, activated alpha(L)beta(2) and bound equally well to resting and activated alpha(L)beta(2), differentially recognized resting alpha(M)beta(2) and alpha(X)beta(2), and bound fully to activated alpha(M)beta(2) and alpha(X)beta(2). The KIM127 epitope localizes within cysteine-rich repeat 2, to residues 504, 506, and 508. By contrast, the two activating mAbs CBR LFA-1/2 and MEM48 bind to overlapping epitopes involving residues 534, 536, 541, 543, and 546 in cysteine-rich repeat 3, and the activating mAb KIM185 maps near the end of cysteine-rich repeat 4. The nonactivating mAbs, 6.7 and CBR LFA-1/7, map more N-terminal, to subregions 344-432 and 432-487, respectively. We thus define five different beta(2) stalk subregions, mAb binding to which correlates with effect on activation, and define regions in an interface that becomes exposed upon integrin activation.  相似文献   

8.
《The Journal of cell biology》1993,120(4):1031-1043
Despite the identification and characterization of several distinct ligands for the leukocyte integrin (CD11/CD18) family of adhesion receptors, little is known about the structural regions on these molecules that mediate ligand recognition. In this report, we use alpha subunit chimeras of Mac-1 (CD11b/CD18) and p150,95 (CD11c/CD18), and an extended panel of newly generated and previously characterized mAbs specific to the alpha chain of Mac-1 to map the binding sites for four distinct ligands for Mac-1: iC3b, fibrinogen, ICAM-1, and the as-yet uncharacterized counter-receptor responsible for neutrophil homotypic adhesion. Epitopes of mAbs that blocked ligand binding were mapped with the chimeras and used to localize the ligand recognition sites because the data obtained from functional assays with the Mac-1/p150,95 chimeras were not easily interpreted. Results show that the I domain on the alpha chain of Mac-1 is an important recognition site for all four ligands, and that the NH2-terminal and perhaps divalent cation binding regions but not the COOH-terminal segment may contribute. The recognition sites in the I domain appear overlapping but not identical as individual Mac-1-ligand interactions are distinguished by the discrete patterns of inhibitory mAbs. Additionally, we find that the alpha subunit NH2-terminal region and divalent cation binding region, despite being separated by over 200 amino acids of the I domain, appear structurally apposed because three mAbs require the presence of both of these regions for antigenic reactivity, and chimeras that contain the NH2 terminus of p150,95 require the divalent cation binding region of p150,95 to associate firmly with the beta subunit.  相似文献   

9.
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.  相似文献   

10.
11.
We have probed the acetylcholine receptor (AcChR) molecule with six anti-AcChR monoclonal antibodies (mAbs) whose binding to the AcChR is inhibited or blocked by alpha-bungarotoxin (alpha BgTx). mAbs bound with a maximum stoichiometry of either one mAb (387D, 247G) or two mAbs (383C, 572C, 370C, 249E) per AcChR monomer, and the extent to which they inhibited alpha BgTx binding directly correlated with their stoichiometry of binding. The effect of mAbs on the alpha BgTx and cholinergic ligand binding properties of the AcChR molecule defined three major categories of mAbs: those that block alpha BgTx and carbamylcholine (agonist) binding, but do not block d-tubocurarine (antagonist) binding (383C, 572C, 370C and 249E); mAb 387D, which blocks agonist binding and partially blocks alpha BgTx and d-tubocurarine binding; and mAb 247G, which does not affect agonist binding, blocks at most 50% of the alpha BgTx binding sites, and decreases the affinity of the high affinity component of d-tubocurarine binding (Mihovilovic, M., and Richman, D. P. (1984) J. Biol. Chem. 259, 15051-15059). Except for mAb 247G, these mAbs strongly competed with each other for binding to the AcChR. In contrast, mAb 247G blocks about 50% of the binding of all the other mAbs. The results demonstrate the ability of mAbs to stabilize different conformational states of the AcChR and to probe cholinergic epitopes of functional importance. They also indicate the nonequivalence of the two alpha-toxin binding regions of the AcChR molecule and suggest that it is possible to identify epitopes within the alpha BgTx binding region that when bound produce differential effects on the binding of the agonist (carbamylcholine) and the antagonist (d-tubocurarine).  相似文献   

12.
We have identified two distinct sequence elements in the mouse alpha 1(III) collagen promoter which are protected from DNase I digestion by the binding of factors present in crude nuclear extracts of NIH 3T3 fibroblasts. Small substitution mutations were introduced into these promoter elements and shown by the gel retardation (gel mobility shift) and DNase I protection assays to decrease or eliminate factor binding to the mutated element but not to the remaining wild-type element, indicating that two distinct factors recognize these separate promoter regions. Region A appears to bind a factor related to the Jun/AP-1 protein, whereas the factor binding to region B remains as yet unidentified. Mutagenesis of either region decreased the activity of the alpha 1(III) collagen promoter in DNA transfection assays by about 3-fold for the A region (located between - 122 and - 106) and about 5-fold for the B region (located between -83 and -61). These results indicate that regions A and B in the mouse alpha 1(III) collagen promoter are positive cis-regulatory elements, independently binding two distinct trans-activating factors.  相似文献   

13.
The heavy chain variable region genes of 5 human polyreactive mAbs generated in our laboratory have been cloned and sequenced using polymerase chain reaction(PCR) technique.We found that 2 and 3 mAbs utilized genes of the VHIV and VHⅢ families,respectively.The former 2 VH segments were in germline configuration.A common VH segment,with the best similarity of 90.1% to the published VHⅢ germline genes,was utilized by 2 different rearranged genes encoding the V regions of other 3 mAbs.This strongly suggests that the common VH segment is a unmutated copy of an unidentified germline VHⅢ gene.All these polyreactive mAbs displayed a large NDN region(VH-D-JH junction).The entire H chain V regions of these polyreactive mAbs are unusually basic.The analysis of the charge properties of these mAbs as well as those of other poly-and mono-reactive mAbs from literatures prompts us to propose that the charged amino acids with a particular distribution along the H chain V region,especially the binding sites(CDRs),may be an important structural feature involved in antibody polyreactivity.  相似文献   

14.
《The Journal of cell biology》1993,122(6):1361-1371
Monoclonal antibodies (mAbs) have been produced against the chicken beta 1 subunit that affect integrin functions, including ligand binding, alpha subunit association, and regulation of ligand specificity. Epitope mapping of these antibodies was used to identify regions of the subunit involved in these functions. To accomplish this, we produced mouse/chicken chimeric beta 1 subunits and expressed them in mouse 3T3 cells. These chimeric subunits were fully functional with respect to heterodimer formation, cell surface expression, and cell adhesion. They differed in their ability to react with a panel anti- chicken beta 1 mAbs. Epitopes were identified by a loss of antibody binding upon substitution of regions of the chicken beta 1 subunit by homologous regions of the mouse beta 1 subunit. The identification of the epitope was confirmed by a reciprocal exchange of chicken and mouse beta 1 domains that resulted in the gain of the ability of the mouse subunit to interact with a particular anti-chicken beta 1 mAb. Using this approach, we found that the epitopes for one set of antibodies that block ligand binding mapped toward the amino terminal region of the beta 1 subunit. This region is homologous to a portion of the ligand-binding domain of the beta 3 subunit. In addition, a second set of antibodies that either block ligand binding, alter ligand specificity, or induce alpha/beta subunit dissociation mapped to the cysteine rich repeats near the transmembrane domain of the molecule. These data are consistent with a model in which a portion of beta 1 ligand binding domain rests within the amino terminal 200 amino acids and a regulatory domain, that affects ligand binding through secondary changes in the structure of the molecule resides in a region of the subunit, possibly including the cysteine-rich repeats, nearer the transmembrane domain. The data also suggest the possibility that the alpha subunit may exert an influence on ligand specificity by interacting with this regulatory domain of the beta 1 subunit.  相似文献   

15.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   

16.
Adenovirus serotype 5 (Ad5) fiber receptor was investigated using reverse antibody biopanning of a phage-displayed hexapeptide library, and virus-neutralizing monoclonal antibodies (mAbs 1D6.3 and 7A2.7) raised against recombinant Ad5 fiber knob. Both mAbs inhibited attachment of Ad5 to HeLa cells. Mimotopes of 1D6.3 showed homology with the C-terminal segment of the alpha2 domain of the heavy chain of human MHC class I molecules (MHC-I alpha2), and mimotopes of 7A2.7 were consensus to human fibronectin type III (FNIII) modules. In vitro, GST-fused MHC-I alpha2- and FNIII-derived oligopeptides interacted with recombinant fibers in a subgroup-specific manner. In vivo, the MHC-I alpha2 synthetic icosapeptide RAIVGFRVQWLRRYFVNGSR showed a net neutralization effect on Ad5 in HeLa cells, whereas the FNIII icosapeptide RHILWTPANTPAMGYLARVS significantly increased Ad5 binding to HeLa cells. Daudi cells, which lack surface expression of HLA class I molecules, showed a weak capacity for Ad5 binding. In beta2-microglobulin-transfected Daudi cells, Ad5 attachment and permissivity were restored to HeLa cell levels, with 4000 receptors per cell and a binding constant of 1.4x10(10)/M. The results suggested that the conserved region of MHC-I alpha2-domain including Trp167 represents a high affinity receptor for Ad5 fiber knob, whereas ubiquitous FNIII modules would serve as auxiliary receptors.  相似文献   

17.
The conformation of the cytoplasmic side of Torpedo marmorata acetylcholine receptor (AChR) was investigated by 22 monoclonal antibodies (mAbs) binding to known sites on the amino acid sequences 339-378 and 336-469 of the AChR alpha- and beta-subunits respectively. Competitions among these mAbs for binding on the intact AChR were compared with their competition for binding on the SDS-denatured subunits and with their corresponding epitopes previously determined on the primary structure of the subunits. We found the following: The three approaches correlated very well suggesting that these mAbs bind on the intact AChR at the same sequences determined by synthetic peptides and not on irrelevant discontinuous epitopes; this finding supports conclusions of Ratnam et al. (1986a) that the amphipathic helix M5 is exposed on the cytoplasmic side of the AChR. The subunit segments alpha 339-378 and beta 336-469 seem to be extended over large distances on the cytoplasmic surface of the AChR. The cytoplasmic surface of beta-subunit has a very immunogenic region. The mAb-competition technique is very sensitive since mAbs to epitopes separated by only about seven residues did not exclude each other, and mAbs to overlapping epitopes exhibited differential competitions with other mAbs.  相似文献   

18.
Mice harboring a G12D activating Kras mutation are among the most heavily studied models in the field of pancreatic adenocarcinoma (PDAC) research. miRNAs are differentially expressed in PDAC from patients and mouse models of PDAC. To better understand the relationship that Kras activation has on miRNA expression, we profiled the expression of 629 miRNAs in RNA isolated from the pancreas of control, young, and old P48+/Cre;LSL-KRASG12D as well as PDX-1-Cre;LSL-KRASG12D mice. One hundred of the differentially expressed miRNAs had increased expression in the advanced disease (old) P48+/Cre;LSL-KRASG12D compared to wild-type mice. Interestingly, the expression of three miRNAs, miR-216a, miR-216b, and miR-217, located within a ~30-kbp region on 11qA3.3, decreased with age (and phenotype severity) in these mice. miR-216/-217 expression was also evaluated in another acinar-specific ELa-KrasG12D mouse model and was downregulated as well. As miR-216/-217 are acinar enriched, reduced in human PDAC and target KRAS, we hypothesized that they may maintain acinar differentiation or represent tumor suppressive miRNAs. To test this hypothesis, we deleted a 27.9-kbp region of 11qA3.3 containing the miR-216/-217 host gene in the mouse’s germ line. We report that germ line deletion of this cluster is embryonic lethal in the mouse. We estimate that lethality occurs shortly after E9.5. qPCR analysis of the miR-216b and miR-217 expression in the heterozygous animals showed no difference in expression, suggesting haplosufficiency by some type of compensatory mechanism. We present the differential miRNA expression in KrasG12D transgenic mice and report lethality from deletion of the miR-216/-217 host gene in the mouse’s germ line.  相似文献   

19.
Diverse cell-surface molecules of the nervous system play an important role in specifying cell interactions during development. Using a method designed to generate mAbs against neural surface molecules of defined molecular weight, we have previously reported on the surface protein, Bravo, found in the developing avian retinotectal system. Bravo is immunologically detected on developing optic fibers in the retina, but absent from distal regions of the same fibers in the tectum. We have isolated cDNA clones encompassing the entire coding region of Bravo, including clones containing five alternative sequences of cDNA. These putative alternatively spliced sequences encode stretches of polypeptide ranging in length from 10-93 amino acids and are predicted to be both extra- and intracellular. The deduced primary structure of Bravo reveals that, like the cell adhesion molecules (CAMs) chicken Ng-CAM and mouse L1, Bravo is composed of six Ig-like domains, five fibronectin type III repeats, a transmembrane domain, and a short cytoplasmic region. Recently, the cDNA sequence of a related molecule, Nr-CAM, was reported and its possible identity with Bravo discussed (Grumet, M., V. Mauro, M. P. Burgoon, G. E. Edelman, and B. A. Cunningham. 1991. J. Cell Biol. 113:1399-1412). Here we confirm this identity and moreover show that Bravo is found on Müller glial processes and end-feet in the developing retina. In contrast to the single polypeptide chain structure of Nr-CAM reported previously, we show that Bravo has a heterodimer structure composed of an alpha chain of M(r) 140/130 and a beta chain of 60-80 kD. As with L1 and Ng-CAM, the two chains of Bravo are generated from an intact polypeptide by cleavage at identical locations and conserved sites within all three molecules (Ser-Arg/Lys-Arg). The similar domain composition and heterodimer structure, as well as the 40% amino acid sequence identity of these molecules, defines them as an evolutionarily related subgroup of CAMs. The relationship of Bravo to molecules known to be involved in cell adhesion and process outgrowth, combined with its pattern of expression and numerous potential isoforms, suggests a complex role for this molecule in cell interactions during neural development.  相似文献   

20.
Regulation of collagen I gene expression by ras.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号