首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Translational oncology》2020,13(3):100746
Pancreatic intraepithelial neoplasia (PanIN), the most common premalignant lesion of the pancreas, is a histologically well-defined precursor to invasive pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms underlying the progression of PanINs have not been fully elucidated. Previously, we demonstrated that the expression of collapsin response mediator protein 4 (CRMP4) in PDAC was associated with poor prognosis. The expression of CRMP4 was also augmented in a pancreatitis mouse model. However, the role of CRMP4 in the progression of PanIN lesions remains uncertain. In the present study, we examined the relationship between CRMP4 expression and progression of PanIN lesions using genetically engineered mouse models. PanIN lesions were induced by peritoneal injection of the cholecystokinin analog caerulein in LSL-KRASG12D; Pdx1-Cre (KC-Crmp4 wild-type, WT) mice and LSL-KRASG12D; Pdx1-Cre; Crmp4−/− (KC-Crmp4 knockout, KO) mice. We analyzed pancreatic tissue sections from these mice and evaluated PanIN grade by hematoxylin and eosin staining. CRMP4 expression was examined and the cellular components assessed by immunohistochemistry using antibodies against CRMP4, CD3, and α-smooth muscle actin (SMA). The incidence of high-grade PanIN in KC-Crmp4 WT mice was higher than that in KC-Crmp4 KO animals. CRMP4 was expressed not only in epithelial cells but also in αSMA-positive cells in stromal areas of PanIN lesions. The CRMP4 expression in stromal areas correlated with PanIN grade in WT mice. These results suggested that the expression of CRMP4 in stromal cells may underlie the incidence or progression of PanIN.  相似文献   

2.
This study aims to investigate the expression status of miRNA-216b in familial hepatocellular carcinoma (HCC) and the correlation between miRNA-216b expression and pathogenesis, as well as the progression of HCC. The expression profile of miRNAs in plasma of peripheral blood between HCC patients with HCC family history and healthy volunteers without HCC family history was determined by microarray. Using real-time quantitative PCR to detect the expression in paired tissues from 150 patients with HCC, miR-216b was selected as its expression value in HCC patients was significantly lower compared with healthy volunteers. Next, miR-216b expression and the clinicopathological features of HCC were evaluated. The effect of miR-216b expression on tumor cells was investigated by regulating miR-216b expression in SMMC-7721 and HepG2 in vitro and in vivo. Finally, we explored mRNA targets of miR-216b. In 150 HCC, 37 (75%) tumors showed reduced miR-216b expression comparing with their adjacent liver tissues. The decreased expression of miR-216b was significantly correlated with tumor volume (P=0.044), HBV infection (P=0.026), HBV DNA quantitative (P=0.001) and vascular invasion (P=0.032). The 5-year disease-free survival and overall rates after liver resection in low expression and high expression groups of miR-216b are 62% and 54%, 25% and 20%, respectively. MiR-216b overexpression inhibited cell proliferation, migration and invasion, and miR-216b inhibition did the opposite. The expression of hepatitis B virus x protein (HBx) has tight correlation with downregulation of miR-216b. Furthermore, miR-216b downregulated the expression of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and exerted its tumor-suppressor function through inhibition of protein kinase B and extracellular signal-regulated kinase signaling downstream of IGF2. MiR-216b inhibits cell proliferation, migration and invasion of HCC by regulating IGF2BP2 and it is regulated by HBx.Hepatocellular carcinoma (HCC) is one of the most common malignancies and is the third most common cause of cancer-related deaths worldwide.1 China accounts for >50% of the total incidence of HCC in the world.2 Most patients with HCC are diagnosed at an advanced stage that renders surgical therapy ineffective. Prognosis of HCC is poor even among patients who undergo liver resection, with 5-year cumulative tumor recurrence rate being 77–100%.3 Chronic hepatitis B virus (HBV) infection accounts for approximately 50% of the total cases of adult HCC and almost all cases of childhood HCC.4 Several studies have suggested that inherited factors influence the risk of developing HCC. Multivariate adjusted hazard ratio for the comparison of hepatitis B virus surface antigen (HBsAg)-seropositive individuals with family history of HCC and HBsAg-seronegative individuals without a family history of HCC is 32.33.5 Demir et al.6 reported a case identical twin brothers who were diagnosed with HCC at the same time and who were unresponsive to chemotherapy and died within the same month. Another study showed that the probability of HBV-associated HCC to be resectable is influenced by the family history of HCC. Particularly, if a patient''s sibling has a history of HBV infection, the patient is more likely to develop unresectable HCC.7 However, the mechanism underlying this association is unknown.MicroRNAs (miRNAs) are non-coding RNAs that interact directly with the 3′-untranslated region (3′-UTR) of target mRNAs 8, 9 and inhibit gene expression by inhibiting the translation of these target mRNAs or by degrading them.10 MiRNAs perform pleiotropic functions by affecting proliferation, differentiation, metastasis and apoptosis. Studies have suggested that altered miRNA expression is associated with cancer.11, 12 MiRNAs may act as oncogenes or tumor suppressors; their functions vary depending on the organs and tumors in which they are expressed.13 MiRNA expression in the plasma or tumor cells of patients with HCC and healthy controls is commonly measured to screen novel miRNAs associated with the pathogenesis and progression of HCC. Our study differs from this strategy, in that we examined miRNA expression in the plasma of patients with HCC who had a family history of HBV-associated HCC and healthy volunteers and identified miRNAs with significantly altered expression levels. Further, we validated these miRNAs by measuring their expression in tumors tissues and adjacent liver tissues. Finally, we determined the molecular functions of these miRNAs and identified their underlying mechanisms by using HCC cell lines, nude mice and patients with HCC.  相似文献   

3.

Background

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the United States, suggesting that novel strategies for the prevention and treatment of PDAC are urgently needed. K-ras mutations are observed in >90% of pancreatic cancer, suggesting its role in the initiation and early developmental stages of PDAC. In order to gain mechanistic insight as to the role of mutated K-ras, several mouse models have been developed by targeting a conditionally mutated K-rasG12D for recapitulating PDAC. A significant co-operativity has been shown in tumor development and metastasis in a compound mouse model with activated K-ras and Ink4a/Arf deficiency. However, the molecular mechanism(s) by which K-ras and Ink4a/Arf deficiency contribute to PDAC has not been fully elucidated.

Methodology/Principal Findings

To assess the molecular mechanism(s) that are involved in the development of PDAC in the compound transgenic mice with activated K-ras and Ink4a/Arf deficiency, we used multiple methods, such as Real-time RT-PCR, western blotting assay, immunohistochemistry, MTT assay, invasion, EMSA and ELISA. We found that the deletion of Ink4a/Arf in K-rasG12D expressing mice leads to PDAC, which is in part mediated through the activation of Notch and NF-κB signaling pathways. Moreover, we found down-regulation of miR-200 family, which could also play important roles in tumor development and progression of PDAC in the compound transgenic mice.

Conclusions/Significance

Our results suggest that the activation of Notch and NF-κB together with the loss of miR-200 family is mechanistically linked with the development and progression of PDAC in the compound K-rasG12D and Ink4a/Arf deficient transgenic mice.  相似文献   

4.
Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, AgcCre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES‐CreERT‐Neo‐pgk transgene is knocked‐in the 3′UTR of the Acan gene. We consistently noticed variable weight and size among the AgcCre littermates, prompting us to examine the cause of this phenotype. Wild‐type, Cre‐heterozygous (Agc+/Cre), and Cre‐homozygous (AgcCre/Cre) littermates were indistinguishable at birth. However, by 1‐month, AgcCre/Cre mice showed a significant reduction in body weight (18–27%) and body length (19–22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild‐type and Agc+/Cre littermates, long bones and vertebrae were shorter in AgcCre/Cre mice. Histological analysis of AgcCre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of AgcCre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of AgcCre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in AgcCre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc+/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc+/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue.  相似文献   

5.
6.
Mutations of the Ras oncogene are frequently detected in human cancers. Among Ras-mediated tumorigenesis, Kras-driven cancers are the most dominant mutation types. Here, we investigated molecular markers related to the Kras mutation, which is involved in energy metabolism in Kras mutant-driven cancer. We first generated a knock-in KrasG12D cell line as a model. The genotype and phenotype of the Kras G12D-driven cells were first confirmed. Dramatically elevated metabolite characterization was observed in Kras G12D-driven cells compared with wild-type cells. Analysis of mitochondrial metabolite-related genes showed that two of the 84 genes in Kras G12D-driven cells differed from control cells by at least twofold. The messenger RNA and protein levels of ATP6V0D2 were significantly upregulated in Kras G12D-driven cells. Knockdown of ATP6V0D2 expression inhibited motility and invasion but did not affect the proliferation of Kras G12D-driven cells. We further investigated ATP6V0D2 expression in tumor tissue microarrays. ATP6V0D2 overexpression was observed in most carcinoma tissues, such as melanoma, pancreas, and kidney. Thus, we suggest that ATP6V0D2, as one of the V-ATPase (vacuolar-type H +-ATPase) subunit isoforms, may be a potential therapeutic target for Kras mutation cancer.  相似文献   

7.
8.
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to the development of invasion and metastasis. Recent data strongly suggests the important role of miRNAs in cancer progression, including invasion and metastasis. Here, we found miR-217 expression was much lower in highly invasive MHCC-97H HCC cells and metastatic HCC tissues. Restored miR-217 expression with miR-217 mimics inhibited invasion of MHCC-97H cells. Inversely, miR-217 inhibition enhanced the invasive ability of Huh7 and MHCC-97L cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated E2F3 was a novel direct target of miR-217. Moreover, E2F3 protein level was positively associated with HCC metastasis and functional analysis confirmed the positive role of E2F3 in HCC cell invasion. Our findings suggest miR-217 function as a potential tumor suppressor in HCC progression and miR-217-E2F3 axis may be a novel candidate for developing rational therapeutic strategies.  相似文献   

9.
10.
Chronic pancreatitis increases by 16-fold the risk of developing pancreatic ductal adenocarcinoma (PDAC), one of the deadliest human cancers. It also appears to accelerate cancer progression in genetically engineered mouse models. We now report that in a mouse model where oncogenic Kras is activated in all pancreatic cell types, two brief episodes of acute pancreatitis caused rapid PanIN progression and accelerated pancreatic cancer development. Thus, a brief inflammatory insult to the pancreas, when occurring in the context of oncogenic KrasG12D, can initiate a cascade of events that dramatically enhances the risk for pancreatic malignant transformation.  相似文献   

11.
Vascular stiffness is a major cause of cardiovascular disease during normal aging and in Hutchinson–Gilford progeria syndrome (HGPS), a rare genetic disorder caused by ubiquitous progerin expression. This mutant form of lamin A causes premature aging associated with cardiovascular alterations that lead to death at an average age of 14.6 years. We investigated the mechanisms underlying vessel stiffness in LmnaG609G/G609G mice with ubiquitous progerin expression, and tested the effect of treatment with nitrites. We also bred LmnaLCS/LCSTie2Cre+/tgand LmnaLCS/LCSSM22αCre+/tg mice, which express progerin specifically in endothelial cells (ECs) and in vascular smooth muscle cells (VSMCs), respectively, to determine the specific contribution of each cell type to vascular pathology. We found vessel stiffness and inward remodeling in arteries of LmnaG609G/G609G and LmnaLCS/LCSSM22αCre+/tg, but not in those from LmnaLCS/LCSTie2Cre+/tgmice. Structural alterations in aortas of progeroid mice were associated with decreased smooth muscle tissue content, increased collagen deposition, and decreased transverse waving of elastin layers in the media. Functional studies identified collagen (unlike elastin and the cytoskeleton) as an underlying cause of aortic stiffness in progeroid mice. Consistent with this, we found increased deposition of collagens III, IV, V, and XII in the media of progeroid aortas. Vessel stiffness and inward remodeling in progeroid mice were prevented by adding sodium nitrite in drinking water. In conclusion, LmnaG609G/G609G arteries exhibit stiffness and inward remodeling, mainly due to progerin‐induced damage to VSMCs, which causes increased deposition of medial collagen and a secondary alteration in elastin structure. Treatment with nitrites prevents vascular stiffness in progeria.  相似文献   

12.
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) down-regulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the α subunit of CK2 (CK2α) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the CK2α 3′-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for CK2α downregulation. The four miRNAs increased senescence-associated β-galactosidase (SA-β-gal) staining, p53 and p21Cip1/WAF1 expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. CK2α over-expression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through CK2α downregulation-dependent ROS generation.  相似文献   

13.
MicroRNAs can function as key tumor suppressors or oncogenes and act as biomarkers for cancer diagnosis or prognosis. Although high-throughput assays have revealed many miRNA biomarkers for pancreatic ductal adenocarcinoma (PDAC), only a few have been validated in independent populations or investigated for functional significance in PDAC pathogenesis. In this study, we correlated the expression of 36 potentially prognostic miRNAs within PDAC tissue with clinico-pathological features and survival in 151 Chinese patients. We then analyzed the functional roles and target genes of two miRNAs in PDAC development. We found that high expression of miR-186 and miR-326 predict poor and improved survival, respectively. miR-186 was over-expressed in PDAC patients compared with controls, especially in patients with large tumors (>2 cm), lymph node metastasis, or short-term survival (< 24 months). In contrast, miR-326 was down-regulated in patients compared with controls and displayed relatively increased expression in the patients with long-term survival or without venous invasion. Functional experiments revealed that PDAC cell proliferation and migration was decreased following inhibition and enhanced following over-expression of miR-186. In contrast, it was enhanced following inhibition and decreased after over-expression of miR-326. A luciferase assay indicated that miR-186 can bind directly to the 3′-UTR of NR5A2 to repress gene expression. These findings suggest that miR-186 over-expression contributes to the invasive potential of PDAC, likely via suppression of NR5A2, thereby leading to a poor prognosis; high miR-326 expression prolongs survival likely via the decreasing invasive potential of PDAC cells. These two miRNAs can be used as markers for clinical diagnosis and prognosis, and they represent therapeutic targets for PDAC.  相似文献   

14.
15.
摘要 目的:探究血清miR-203、miR-217表达与急性髓系白血病(AML)患者预后的关系。方法:选择2010年4月至2014年4月我院诊治的101例AML患者作为AML组,AML组根据治疗效果进一步分为完全缓解组和复发组,选择同期在我院体检的101例健康者作为健康组。采用荧光定量PCR检测各组的血清miR-203、miR-217表达水平,分析血清miR-203、miR-217表达水平与患者临床病理特征的关系,采用Kaplan-Meier法分析不同血清miR-203、miR-217表达水平AML患者的预后。结果:与健康组相比,AML组的血清miR-203、miR-217表达水平明显更低(P<0.05)。与完全缓解组相比,复发组的血清miR-203、miR-217表达水平明显更低(P<0.05)。血清miR-203表达水平与AML患者白细胞计数相关(P<0.05),而血清miR-217表达水平与AML患者血小板计数相关(P<0.05)。血清miR-203相对高表达和miR-217相对高表达的AML患者5年生存率分别高于血清miR-203相对低表达和miR-217相对低表达患者(Log Rank miR-203 =17.870,Log Rank miR-217 =28.926,均P=0.000)。结论:血清miR-203、miR-217的表达水平与AML密切相关,检测血清miR-203、miR-217表达水平可能有助于评估AML患者的预后。  相似文献   

16.
17.
Apoptosis is a genetically directed process of programmed cell death. A variety of microRNAs (miRNAs), endogenous single-stranded non-coding RNAs of about 22 nucleotides in length have been shown to be involved in the regulation of the intrinsic or extrinsic apoptotic pathways. There is increasing evidence that the aberrant expression of miRNAs plays a causal role in the development of diseases such as cancer. This makes miRNAs promising candidate molecules as therapeutic targets or agents. MicroRNA (miR)-217-5p has been implicated in carcinogenesis of various cancer entities, including colorectal cancer. Here, we analyzed the pro-apoptotic potential of miR-217-5p in a variety of colorecatal cancer cell lines showing that miR-217-5p mimic transfection led to the induction of apoptosis causing the breakdown of mitochondrial membrane potential, externalization of phosphatidylserine, activation of caspases and fragmentation of DNA. Furthermore, elevated miR-217-5p levels downregulated mRNA and protein expression of atypical protein kinase c iota type I (PRKCI), BAG family molecular chaperone regulator 3 (BAG3), integrin subunit alpha v (ITGAV) and mitogen-activated protein kinase 1 (MAPK1). A direct miR-217-5p mediated regulation to those targets was shown by repressed luciferase activity of reporter constructs containing the miR-217-5p binding sites in the 3′ untranslated region. Taken together, our observations have uncovered the apoptosis-inducing potential of miR-217-5p through its regulation of multiple target genes involved in the ERK-MAPK signaling pathway by regulation of PRKCI, BAG3, ITGAV and MAPK1.  相似文献   

18.
Ethanol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a crucial role in the pathogenesis of alcoholic fatty liver disease. Here, we investigated the underlying mechanisms of this inhibition by identifying a new hepatic target of ethanol action, microRNA-217 (miR-217). The role of miR-217 in the regulation of the effects of ethanol was investigated in cultured mouse AML-12 hepatocytes and in the livers of chronically ethanol-fed mice. In AML-12 hepatocytes and in mouse livers, chronic ethanol exposure drastically and specifically induced miR-217 levels and caused excess fat accumulation. Further studies revealed that overexpression of miR-217 in AML-12 cells promoted ethanol-mediated impairments of SIRT1 and SIRT1-regulated genes encoding lipogenic or fatty acid oxidation enzymes. More importantly, miR-217 impairs functions of lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that miR-217 is a specific target of ethanol action in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease.  相似文献   

19.
Neuropathic pain is the most common chronic pain that is caused by nerve injury or disease that influences the nervous system. Increasing evidence suggested that microRNAs (miRNAs) play a crucial role in neuropathic pain and neuroinflammation development. However, the functional role of miR-217 in the development of neuropathic pain remains unknown. In this study, we used rats to establish a neuropathic pain model and showed that the miR-217 expression level was upregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI). However, the expression of miR-217 was not changed in the anterior cingulated cortex (ACC), hippocampus, and dorsal root ganglion (DRG) of bCCI rats. Ectopic expression of miR-217 attenuated neuropathic pain and suppressed neuroinflammation expression in vivo. We identified toll-like receptor 5 (TLR5) as a direct target gene of miR-217 in the PC12 cell. In addition, we demonstrated that the expression level of TLR5 was upregulated in bCCI rats. Moreover, restoration of TLR5 rescued the inhibitory roles induced by miR-217 overexpression on neuropathic pain and neuroinflammation development. These data suggested that miR-217 played a pivotal role in the development of neuropathic pain partly through regulating TLR5 expression.  相似文献   

20.
Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号