首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the accompanying paper [Matsubara, M., et al. (2003) Biochemistry 42, 4993-5002], we have partially purified and characterized rat 5-formyluracil (fU)-DNA glycosylase (FDG). Several lines of evidence have indicated that FDG is a rat homologue of single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1). We report here that rat and human SMUG1 (rSMUG1 and hSMUG1) expressed from the corresponding cDNAs indeed excise fU in single-stranded (ss) and double-stranded (ds) DNA. The enzymes also excised uracil (U) and uracil derivatives bearing an oxidized group at C5 [5-hydroxyuracil (hoU) and 5-hydroxymethyluracil (hmU)] in ssDNA and dsDNA but not analogous cytosine derivatives (5-hydroxycytosine and 5-formylcytosine) and other oxidized damage. The damage specificity and the salt concentration dependence of rSMUG1 (and hSMUG1) agreed well with those of FDG, confirming that FDG is rSMUG1. Consistent with the damage specificity above, hSMUG1 removed damaged bases from Fenton-oxidized calf thymus DNA, generating abasic sites. The amount of resulting abasic sites was about 10% of that generated by endonuclease III or 8-oxoguanine glycosylase in the same substrate. The HeLa cell extract and hSMUG1 exhibited a similar damage preference (hoU.G > hmU.A, fU.A), and the activities for fU, hmU, and hoU in the cell extract were effectively neutralized with hSMUG1 antibodies. These data indicate a dual role of hSMUG1 as a backup enzyme for UNG and a primary repair enzyme for a subset of oxidized pyrimidines such as fU, hmU, and hoU.  相似文献   

2.
5-Formyluracil (fU) is a major oxidative thymine lesion produced by reactive oxygen species and exhibits genotoxic and cytotoxic effects via several mechanisms. In the present study, we have searched for and characterized mammalian fU-DNA glycosylase (FDG) using two approaches. In the first approach, the FDG activity was examined using purified base excision repair enzymes. Human and mouse endonuclease III homologues (NTH1) showed a very weak FDG activity, but the parameter analysis and NaBH(4) trapping assays of the Schiff base intermediate revealed that NTH1 was kinetically incompetent for repair of fU. In the second approach, FDG was partially purified (160-fold) from rat liver. The enzyme was a monofunctional DNA glycosylase and recognized fU in single-stranded (ss) and double-stranded (ds) DNA. The most purified FDG fraction also exhibited monofunctional DNA glycosylase activities for uracil (U), 5-hydroxyuracil (hoU), and 5-hydroxymethyluracil (hmU) in ssDNA and dsDNA. The fU-excising activity of FDG was competitively inhibited by dsDNA containing U.G, hoU.G, and hmU.A but not by intact dsDNA containing T.A. Furthermore, the activities of FDG for fU, hmU, hoU, and U in ssDNA and dsDNA were neutralized by the antibody raised against SMUG1 uracil-DNA glycosylase, showing that FDG is a rat homologue of SMUG1.  相似文献   

3.
Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.  相似文献   

4.
hSMUG1 (human single-stranded selective monofunctional uracil-DNA glyscosylase) is one of three glycosylases encoded within a small region of human chromosome 12. Those three glycosylases, UNG (uracil-DNA glycosylase), TDG (thymine-DNA glyscosylase), and hSMUG1, have in common the capacity to remove uracil from DNA. However, these glycosylases also repair other lesions and have distinct substrate preferences, indicating that they have potentially redundant but not overlapping physiological roles. The mechanisms by which these glycosylases locate and selectively remove target lesions are not well understood. In addition to uracil, hSMUG1 has been shown to remove some oxidized pyrimidines, suggesting a role in the repair of DNA oxidation damage. In this paper, we describe experiments in which a series of oligonucleotides containing purine and pyrimidine analogs have been used to probe mechanisms by which hSMUG1 distinguishes potential substrates. Our results indicate that the preference of hSMUG1 for mispaired uracil over uracil paired with adenine is best explained by the reduced stability of a duplex containing a mispair, consistent with previous reports with Escherichia coli mispaired uracil-DNA glycosylase. We have also extended the substrate range of hSMUG1 to include 5-carboxyuracil, the last in the series of damage products from thymine methyl group oxidation. The properties used by hSMUG1 to select damaged pyrimidines include the size and free energy of solvation of the 5-substituent but not electronic inductive properties. The observed distinct mechanisms of base selection demonstrated for members of the uracil glycosylase family help explain how considerable diversity in chemical lesion repair can be achieved.Three glycosylases that initiate DNA repair via the base excision repair (BER)2 pathway are found on human chromosome 12. These three glycosylases are designated as UNG, TDG, and hSMUG1 (14). Several groups are currently investigating the structure and properties of these glycosylases in order to determine their physiological roles. A common property of these enzymes is the cleavage of uracil residues from DNA, although each of the glycosylases repairs additional lesions. Despite low sequence homology (8%), these three glycosylases share a common fold and overall architecture (5). Subtle differences in structure apparently distinguish these repair enzymes with respect to substrate and context preferences.UNG is the most active of the glycosylases. UNG recognizes uracil residues when found in single strand, or double strand DNA paired with adenine or mispaired with guanine (6); however, only a small number of other pyrimidines are also targets. UNG is spliced into two forms, UNG1 and UNG2. UNG1 is targeted to the mitochondrion, whereas UNG2 is found primarily in the cell nucleus (7). Due to the capacity of UNG to repair uracil in many contexts, as well as its association with DNA replication machinery and cell cycle specificity, it is thought that a primary role for UNG is in the repair of uracil misincorporated opposite adenine during DNA replication (8, 9). Recent studies also suggest an important role for UNG in removing uracil residues in DNA generated by activation-induced deaminase as part of somatic hypermutation and class switch recombination in activated B-cells (1012).In contrast to UNG, the related glycosylases hSMUG1 and TDG appear to target uracil and uracil analogs mispaired with guanine (3, 13, 14). Although hSMUG1 was originally characterized as a single strand selective glycosylase (13), more recent studies suggest it is more active on mispaired uracil in duplex DNA (14), and it has an extended substrate range, removing several oxidized pyrimidines (1518), including 5-hydroxymethyluracil (HmU), 5-formyluracil (FoU), and 5-hydroxyuracil (HoU). TDG appears to act exclusively on duplex substrates, with a strong preference for mispaired pyrimidines, including thymine, and a strong preference for damage located in CpG dinucleotides (1921). The apparent sequence selectivity of TDG has led to suggestions that the primary role of TDG is the repair of deaminated 5-methylcytosine residues in CpG dinucleotides (20).In this paper, we have investigated the enzymatic properties of recombinant human SMUG1 in single-turnover kinetic assays on a series of oligonucleotide substrates containing purine and pyrimidine analogs. In the first set of experiments, the capacity of hSMUG1 to cleave uracil opposite a series of purine analogs was measured to determine if the preference of hSMUG1 for mispairs can be attributed to reduced duplex stability or if hSMUG1 recognizes specific functional groups on the purine opposite the target uracil. In the second series of experiments, a series of 5-substituted uracil analogs was paired opposite guanine to probe the mechanisms by which hSMUG1 distinguishes potential substrates. This series includes uracil, a series of oxidatively damaged pyrimidines, and the 5-halouracils, which serve to measure both substituent size and electronic inductive properties. New to this series is 5-carboxyuracil (CaU), the last in the sequence of damage products arising from oxidation of the thymine methyl group (2224).Previous studies with other glycosylases described above have highlighted the importance of size and electronic inductive properties of 5-substituted pyrimidines in substrate selection. In contrast, the capacity of hSMUG1 to recognize HmU but not thymine has been attributed to the hydrophilicity and hydrogen-bonding capacity of the HmU substituent (1518). In this paper, selected physical properties have been calculated for each pyrimidine examined, including solvent-accessible surface area (SASA) and the free energy of solvation in water. The SASA is introduced as a parameter to define the relative size of the 5-substituted pyrimidines, whereas the free energy of solvation in water is proposed to describe the capacity of the 5-substituted pyrimidine to interact with or replace water within the hSMUG1 pyrimidine binding pocket. The observed kinetic rate constants are compared with the physical properties of the modified bases and base pairs in order to explain the mechanisms by which hSMUG1 identifies and distinguishes target lesions. Our results indicate that the strategies used by hSMUG1 to select target bases and avoid normal bases contrast with those of other members of the uracil DNA-glycosylase family.  相似文献   

5.
6.
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). Excision and replacement of these intermediates is initiated by DNA glycosylases such as thymine-DNA glycosylase (TDG), methyl-binding domain protein 4 (MBD4) and single-strand specific monofunctional uracil-DNA glycosylase 1 in the base excision repair pathway. Here, we report detailed biochemical and structural characterization of human MBD4 which contains mismatch-specific TDG activity. Full-length as well as catalytic domain (residues 426–580) of human MBD4 (MBD4cat) can remove 5hmU when opposite to G with good efficiency. Here, we also report six crystal structures of human MBD4cat: an unliganded form and five binary complexes with duplex DNA containing a T•G, 5hmU•G or AP•G (apurinic/apyrimidinic) mismatch at the target base pair. These structures reveal that MBD4cat uses a base flipping mechanism to specifically recognize thymine and 5hmU. The recognition mechanism of flipped-out 5hmU bases in MBD4cat active site supports the potential role of MBD4, together with TDG, in maintenance of genome stability and active DNA demethylation in mammals.  相似文献   

7.
There are at least four distinct families of enzymes that recognize and remove uracil from DNA. Family-3 (SMUG1) enzymes have recently been identified and have a preference for uracil in single-stranded DNA when assayed in vitro. Here we investigate the in vivo function of SMUG1 using the yeast Saccharomyces cerevisiae as a model system. These organisms lack a SMUG1 homologue and use a single enzyme, Ung1 to carry out uracil-repair. When a wild-type strain is treated with antifolate agents to induce uracil misincorporation into DNA, S-phase arrest and cellular toxicity occurs. The arrest is characteristic of checkpoint activation due to single-strand breaks caused by continuous uracil removal and self-defeating DNA repair. When uracil-DNA glycosylase is deleted (deltaung1), cells continue through S-phase and arrest at G(2)/M, presumably due to the effects of stable uracil misincorporation in DNA. Pulsed field gel electrophoresis (PFGE) demonstrates that cells are able to complete DNA replication with uracil-substituted DNA and do not experience the extensive strand breakage attributed to uracil-DNA glycosylase-mediated repair. As a result, these cells experience early protection from antifolate-induced cytotoxicity. When either UNG1 or SMUG1 functions are reintroduced back into the null strain and then subjected to antifolate treatment, the cells revert back to the wild-type phenotype as shown by a restored sensitivity to drug and S-phase arrest. The arrest is accompanied by the accumulation of replication intermediates as determined by PFGE. Collectively, these data indicate that SMUG1 can act as a functional homolog of the family-1 uracil-DNA glycosylase enzymes.  相似文献   

8.
Cytosine deamination is a major promutagenic process, generating G:U mismatches that can cause transition mutations if not repaired. Uracil is also introduced into DNA via nonmutagenic incorporation of dUTP during replication. In bacteria, uracil is excised by uracil-DNA glycosylases (UDG) related to E. coli UNG, and UNG homologs are found in mammals and viruses. Ung knockout mice display no increase in mutation frequency due to a second UDG activity, SMUG1, which is specialized for antimutational uracil excision in mammalian cells. Remarkably, SMUG1 also excises the oxidation-damage product 5-hydroxymethyluracil (HmU), but like UNG is inactive against thymine (5-methyluracil), a chemical substructure of HmU. We have solved the crystal structure of SMUG1 complexed with DNA and base-excision products. This structure indicates a more invasive interaction with dsDNA than observed with other UDGs and reveals an elegant water displacement/replacement mechanism that allows SMUG1 to exclude thymine from its active site while accepting HmU.  相似文献   

9.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

10.
5-Fluorouracil (5-FU), a chemotherapeutic drug commonly used in cancer treatment, imbalances nucleotide pools, thereby favoring misincorporation of uracil and 5-FU into genomic DNA. The processing of these bases by DNA repair activities was proposed to cause DNA-directed cytotoxicity, but the underlying mechanisms have not been resolved. In this study, we investigated a possible role of thymine DNA glycosylase (TDG), one of four mammalian uracil DNA glycosylases (UDGs), in the cellular response to 5-FU. Using genetic and biochemical tools, we found that inactivation of TDG significantly increases resistance of both mouse and human cancer cells towards 5-FU. We show that excision of DNA-incorporated 5-FU by TDG generates persistent DNA strand breaks, delays S-phase progression, and activates DNA damage signaling, and that the repair of 5-FU–induced DNA strand breaks is more efficient in the absence of TDG. Hence, excision of 5-FU by TDG, but not by other UDGs (UNG2 and SMUG1), prevents efficient downstream processing of the repair intermediate, thereby mediating DNA-directed cytotoxicity. The status of TDG expression in a cancer is therefore likely to determine its response to 5-FU–based chemotherapy.  相似文献   

11.
The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. TDG excises the mismatched base from G:X mismatches, where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). In addition, TDG excises the Tet protein products 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) but not 5hmC and 5mC, when paired with a guanine. Here we present a post-reactive complex structure of the human TDG domain with a 28-base pair DNA containing a G:5hmU mismatch. TDG flips the target nucleotide from the double-stranded DNA, cleaves the N-glycosidic bond and leaves the C1′ hydrolyzed abasic sugar in the flipped state. The cleaved 5hmU base remains in a binding pocket of the enzyme. TDG allows hydrogen-bonding interactions to both T/U-based (5hmU) and C-based (5caC) modifications, thus enabling its activity on a wider range of substrates. We further show that the TDG catalytic domain has higher activity for 5caC at a lower pH (5.5) as compared to the activities at higher pH (7.5 and 8.0) and that the structurally related Escherichia coli mismatch uracil glycosylase can excise 5caC as well. We discuss several possible mechanisms, including the amino-imino tautomerization of the substrate base that may explain how TDG discriminates against 5hmC and 5mC.  相似文献   

12.
In kinetoplastid flagellates such as Trypanosoma brucei, a small percentage of the thymine residues in the nuclear DNA is replaced by the modified base beta-D-glucosyl-hydroxymethyluracil (J), mostly in repetitive sequences like the telomeric GGGTTA repeats. In addition, traces of 5-hydroxymethyluracil (HOMeUra) are present. Previous work has suggested that J is synthesised in two steps via HOMedU as an intermediate, but as J synthesising enzymes have not yet been identified, the biosynthetic pathway remains unclear. To test a model in which HOMeUra functions as a precursor of J, we introduced an inducible gene for the human DNA glycosylase hSMUG1 into bloodstream form T.brucei. In higher eukaryotes SMUG1 excises HOMeUra as part of the base excision repair system. We show that expression of the gene in T.brucei leads to massive DNA damage in J-modified sequences and results in cell cycle arrest and, eventually, death. hSMUG1 also reduces the J content of the trypanosome DNA. This work supports the idea that HOMeUra is a precursor of J, freely accessible to a DNA glycosylase.  相似文献   

13.
Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.  相似文献   

14.
Deamination of cytosine in DNA results in mutagenic U:G mispairs, whereas incorporation of dUMP leads to U:A pairs that may be genotoxic directly or indirectly. In both cases, uracil is mainly removed by a uracil-DNA glycosylase (UDG) that initiates the base excision repair pathway. The major UDGs are mitochondrial UNG1 and nuclear UNG2 encoded by the UNG-gene, and nuclear SMUG1. TDG and MBD4 remove uracil from special sequence contexts, but their roles remain poorly understood. UNG2 is cell cycle regulated and has a major role in post-replicative removal of incorporated uracils. UNG2 and SMUG1 are both important for prevention of mutations caused by cytosine deamination, and their functions are non-redundant. In addition, SMUG1 has a major role in removal of hydroxymethyl uracil from oxidized thymines. Furthermore, UNG-proteins and SMUG1 may have important functions in removal of oxidized cytosines, e.g. isodialuric acid, alloxan and 5-hydroxyuracil after exposure to ionizing radiation. UNG2 is also essential in the acquired immune response, including somatic hypermutation (SHM) required for antibody affinity maturation and class switch recombination (CSR) mediating new effector functions, e.g. from IgM to IgG. Upon antigen exposure B-lymphocytes express activation induced cytosine deaminase that generates U:G mispairs at the Ig locus. These result in GC to AT transition mutations upon DNA replication and apparently other mutations as well. Some of these may result from the generation of abasic sites and translesion bypass synthesis across such sites. SMUG1 can not complement UNG2 deficiency, probably because it works very inefficiently on single-stranded DNA and is down-regulated in B cells. In humans, UNG-deficiency results in the hyper IgM syndrome characterized by recurrent infections, lymphoid hyperplasia, extremely low IgG, IgA and IgE and elevated IgM. Ung(-/-) mice have a similar phenotype, but in addition display dysregulated cytokine production and develop B cell lymphomas late in life.  相似文献   

15.
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2–3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential ‘pre-replicative’ removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.  相似文献   

16.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   

17.
DNA-uracil and human pathology   总被引:1,自引:0,他引:1  
Uracil is usually an inappropriate base in DNA, but it is also a normal intermediate during somatic hypermutation (SHM) and class switch recombination (CSR) in adaptive immunity. In addition, uracil is introduced into retroviral DNA by the host as part of a defence mechanism. The sources of uracil in DNA are spontaneous or enzymatic deamination of cytosine (U:G mispairs) and incorporation of dUTP (U:A pairs). Uracil in DNA is removed by a uracil-DNA glycosylase. The major ones are nuclear UNG2 and mitochondrial UNG1 encoded by the UNG-gene, and SMUG1 that also removes oxidized pyrimidines, e.g. 5-hydroxymethyluracil. The other ones are TDG that removes U and T from mismatches, and MBD4 that removes U from CpG contexts. UNG2 is found in replication foci during the S-phase and has a distinct role in repair of U:A pairs, but it is also important in U:G repair, a function shared with SMUG1. SHM is initiated by activation-induced cytosine deaminase (AID), followed by removal of U by UNG2. Humans lacking UNG2 suffer from recurrent infections and lymphoid hyperplasia, and have skewed SHM and defective CSR, resulting in elevated IgM and strongly reduced IgG, IgA and IgE. UNG-defective mice also develop B-cell lymphoma late in life. In the defence against retrovirus, e.g. HIV-1, high concentrations of dUTP in the target cells promotes misincorporation of dUMP-, and host cell APOBEC proteins may promote deamination of cytosine in the viral DNA. This facilitates degradation of viral DNA by UNG2 and AP-endonuclease. However, viral proteins Vif and Vpr counteract this defense by mechanisms that are now being revealed. In conclusion, uracil in DNA is both a mutagenic burden and a tool to modify DNA for diversity or degradation.  相似文献   

18.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

19.
Gene-targeted mice deficient in the evolutionarily conserved uracil-DNA glycosylase encoded by the UNG gene surprisingly lack the mutator phenotype characteristic of bacterial and yeast ung(-) mutants. A complementary uracil-DNA glycosylase activity detected in ung(-/-) murine cells and tissues may be responsible for the repair of deaminated cytosine residues in vivo. Here, specific neutralizing antibodies were used to identify the SMUG1 enzyme as the major uracil-DNA glycosylase in UNG-deficient mice. SMUG1 is present at similar levels in cell nuclei of non-proliferating and proliferating tissues, indicating a replication- independent role in DNA repair. The SMUG1 enzyme is found in vertebrates and insects, whereas it is absent in nematodes, plants and fungi. We propose a model in which SMUG1 has evolved in higher eukaryotes as an anti-mutator distinct from the UNG enzyme, the latter being largely localized to replication foci in mammalian cells to counteract de novo dUMP incorporation into DNA.  相似文献   

20.
Werner's syndrome (WS) is an autosomal recessive disease marked by early symptoms of accelerated aging. There is evidence indicating accumulation of oxidized DNA bases to be a major factor in cellular aging. The first step of excision repair of such bases in human cells is their removal from DNA by glycosylases. 5-Hydroxymethyluracil (HMU)-DNA glycosylase excises HMU from DNA; another glycosylase removes many non-aromatic pyrimidine derivatives. Levels of glycosylases that excise oxidized pyrimidines from DNA were compared between confluent and proliferating populations of WS cells, age-matched controls, and young control cells. They were assayed by measurements of direct release of free bases from their respective DNA substrates. Specific activities of the glycosylase that releases various modified pyrimidines and of uracil-DNA glycosylase (which removes uracil from DNA) were essentially the same in all cell lines. Cell cycle variations of these enzymes also did not differ between WS and control cells. HMU-DNA glycosylase specific activity was reduced in WS cells. Reduction of HMU-DNA glycosylase has been described in senescent human WI-38 cells. Therefore, while neither WS nor senescent cells have overall deficiencies of DNA glycosylase activities, they both might have reduced excision of HMU from DNA. This indicates a possible role of HMU accumulation in the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号