首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom-MMP is a different type from gelatinase. Activity of phospholipases A(2), B, C and hyaluronidase were measured with agar plates. High activities of phospholipase B and hyaluronidase were detected. These results suggest that the venom-MMP initially attacked the specific site of the intercellular-matrix of the fat body, and then the hyaluronidase and the phospholipase B cause lysis of the fat body cell, allowing lipid particles to be released into the host hemolymph.  相似文献   

2.
Two states of parasitization in the Pseudaletia separata-Cotesia kariyai system were examined: one that was lightly parasitized and one that was heavily parasitized. We predicted that the consumption of fat body and hemolymph nutrients depends on the number of parasitoid larvae in the host. Lightly parasitized hosts (average clutch size+/-S.E.: 42.5+/-16.2, N=15) and heavily parasitized hosts (average clutch size+/-S.E.: 230.2+/-8.8, N=15) were prepared artificially. Eight days after parasitization, perivisceral fat body was depleted in the heavily parasitized host, although peripheral fat body was not yet consumed, but by day 10 most of the peripheral fat body was consumed. In lightly parasitized hosts, perivisceral fat body was not consumed by day 10. The parasitoid larvae deplete the perivisceral fat body first and then consume the peripheral fat body in the heavily parasitized host. The amount of trehalose, the major carbohydrate in the hemolymph, was related to the number of parasitoid larvae developing in the host. In a heavily parasitized host, trehalose concentrations remained low. However, in lightly parasitized hosts, the amount of trehalose increased 8 days after parasitization and then decreased by day 10. Protein and total lipid concentrations in the hemolymph of the heavily parasitized host were significantly lower than in lightly parasitized host on day 10, suggesting that the large number of parasitoid larvae depleted the fat body and hemolymph nutrients by day 10. High concentrations of total lipid on day 8 and 10 in lightly parasitized hosts and on day 8 in heavily parasitized host are likely to be attributed to the teratocytes.  相似文献   

3.
Koinobiont parasitoids utilize nutrients obtained from hosts that contine to feed and grow after parasitization. However, if the ecdysis of early host instars is prevented, parasitized larvae will fail to grow large enough to support the development of the parasitoid brood and both organisms will perish. When L5 instar larvae (the penultimate stage) of Pseudaletia separata were parasitized by Cotesia kariyai and injected with Euplectrus separatae venom (5PV), the development of these hosts was arrested before molting to the next stage and the caterpillars thus failed to gain weight. These hosts remained at approximately 300 mg until parasitoid emergence. In contrast, hosts parasitized as L5 but without the injection of venom (5P) exhibited an increase in weight after molting to the next stage and ultimately grew to approximately 700 mg. The inhibition of ecdysis reduced the amount of food resource (e.g. fat body) for the parasitoid larvae. On the other hand, when final (= L6) host instars were parasitized and injected with E. separatae venom (6PV), the maximum weight attained by these larvae was about 710 mg, although weight gain was depressed compared to hosts parasitized without the injection of E. separatae venom (6P). The adult weight of C. kariyai that emerged from 5PV hosts was less than conspecifics that emerged from 5P, 6P, and 6PV respectively, although the egg-pupal period of the parasitoid from 5PV hosts was extended. The offspring sex ratio (percentage males) of adult wasps did not vary significantly with treatment. Female parasitoids that eclosed from 5PV hosts laid almost the same number of eggs in day 0-6th host instars as those emerging from 5P, 6P, 6PV hosts. Their egg-pupal period was extended and the cocoon cluster mass and the parasitoid body mass on subsequent generations was lighter than those reared from 5P, 6P, 6PV hosts. The sex ratio of F2 C. kariyai wasps that eclosed from 5PV increased more than in wasps that eclosed from the other host treatments (5P, 6P, 6PV). Our results reveal that a reduction in host quality and offspring fitness in the first generation negatively impacted female fitness in the second generation. An early arrestment of host growth, mediated by the addition of E. separatae venom, has severe implications on parasitoid fitness by reducing host quality, especially in smaller hosts.  相似文献   

4.
Larval development of the parasitoid Cardiochiles nigriceps Viereck occurs in the last instar larva of its host, Heliothis virescens (F.). This allows the parasitoid to exploit the nutritional increase in the biosynthetic activity occurring in the host in preparation for metamorphosis. To understand the biochemical basis of this host parasitoid developmental synchrony, we undertook host ligation studies and analyzed host hemolymph for proteins and glycerol esters. Parasitization affected the biochemical profile of the host. The hemolymph protein concentration of parasitized last instar H. virescens larvae increased through time, whereas unparasitized (control) larvae were characterized by a decrease in the protein titer when they reached the prepupal stage. The effect of parasitism on glyceride titers of host hemolymph was not as pronounced as the effect on proteins. Ligation conducted on 5th instar hosts, which were parasitized as 4th instars, affected parasitoid development in a time-dependent way. The percentage of successfully developing C. nigriceps larvae increased with the increase of the time interval between parasitization and ligation. Ligation performed before day 2 of the 5th larval instar of H. virescens completely inhibited parasitoid development. Ligations that disrupted parasitoid developmentwere associated with a low host hernolymph protein concentration. Parasitoid development was successful when hernolymph protein titer was high, as occurred when ligations were performed after day 3 of the 5th host instar in both control and parasitized larvae. Ligations in both situations resulted in a slight increase in glyceride titers. The results suggest that host proteins and/or some factor(s) associated with them may play a role in parasitoid growth and development. © 1993 Wiley-Liss, Inc.  相似文献   

5.
寄主小菜蛾Plutella xylostella被内寄生蜂菜蛾盘绒茧蜂Cotesia plutellae寄生后,其取食、发育及营养代谢在各种寄生因子的作用下伴随幼蜂的发育而发生很大的变化,畸形细胞作为调节因子之一也发挥了重要的作用。本实验通过比较被寄生和未被寄生小菜蛾血淋巴蛋白浓度以及两种血淋巴对菜蛾盘绒茧蜂幼蜂进行体外培养的培养液的蛋白浓度,发现被寄生小菜蛾血淋巴比未被寄生小菜蛾血淋巴的蛋白浓度略低但差异不显著,而未被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度显著低于被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度,证明畸形细胞的蛋白质分泌功能。被寄生后期, 小菜蛾体重明显大于未被寄生的小菜蛾体重,而脂肪体重量相比正好相反;通过显微染色观察,在小菜蛾念珠状脂肪体表面粘附有畸形细胞,对脂肪体进行分解破坏而使其成颗粒状; 蛋白含量和脂滴浓度测定也表明,脂肪体的可溶性蛋白含量和脂滴浓度也迅速降低,同比低于未被寄生小菜蛾。而与此同时,幼蜂正处在快速生长阶段,中肠酯酶的活性逐步上升,幼蜂得以快速消化吸收小菜蛾体内的营养直到完成幼虫发育,整个幼蜂的脂滴浓度也达到了最大值。因此寄生后期,推测在畸形细胞的协助下,幼蜂吸收了寄主小菜蛾体内的营养为自身生长发育所用。  相似文献   

6.
Larvae of the gregarious ectoparasitoid, Euplectrus separatae, a species that parasitizes Pseudaletia separata, migrate from the dorsal to the ventral side of the host larva for pupation 7 days after parasitization. The parasitized host larvae die after the migration. The body mass of the parasitoid larvae increases while that of the host larva drastically decreases. Most of the tissue in the dead host larvae completely collapses. In this study, we examined the cause of host death and how the tissues collapse. Artificial removal of all parasitoid larvae before their migration on day 7 rescued the host larvae, but removal after parasitoid migration did not rescue the hosts. Tissues of the dead host larvae were completely liquefied. Injection of saliva from day 7 parasitoid larvae into host larvae killed the host larvae. High activity of a trypsin-like enzyme was detected in the saliva of day 7 parasitoids. Though phospholipase B and hyaluronidase were also detected in the saliva, commercial phospholipase B and hyaluronidase did not kill the hosts, whereas an injection of commercial trypsin was lethal. The trypsin-injected hosts showed the same tissue collapse as noted in parasitized and saliva-injected hosts. Leupeptin, a trypsin inhibitor, reduced mortality when injected into day 7 hosts (parasitoids were removal following migration). These observations suggest that the day 7 parasitoid larvae release saliva containing a trypsin-like enzyme to digest the host tissues following migration.  相似文献   

7.
Larvae of a gregarious endoparasitoid, Cotesia kariyai (Watanabe), grew rapidly during the second stadium in the host. The fat body of a Pseudaletia host parasitized by C. kariyai was completely consumed by 10 d, just before larval emergence. It seemed hard to explain the growth of the second instar parasitoids and the rapid consumption of the fat body only by ingestion of hemolymph converted from the fat body or other organs of the host. Paraffin sections of the parasitized host revealed that many teratocytes were attached to the surface of the fat body in many sites and destroyed the fat body tissue locally. Zymography of proteins released from the teratocytes revealed that the teratocytes 4 to 9 days after parasitization showed collagenase activity (as a gelatinase). Further, 1st instar parasitoids which were transplanted together with teratocytes into unparasitized hosts preconditioned with C. kariyai polydnavirus (CkPDV) plus venom, grew normally to the 2nd stadium. Abnormal growth of parasitoid larvae was observed when parasitoid larvae were transplanted without teratocytes. These results suggest that the teratocytes attach to the outer sheath of the fat body, secrete an enzyme that makes a hole in the matrix of the fat body, thus allowing the second instar parasitoid to ingest the content of the fat body.  相似文献   

8.
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.  相似文献   

9.
Teratocytes deriving from the serosal membrane of Cardiochiles nigriceps Viereck, obtained “in vitro” from embryos hatched on a semidefined medium, were injected at different numbers and in different developmental stages of nonparasitized Heliothis virescens (F.) last instar larvae. Host development was affected by teratocyte injections and the responses registered ranged from normal to complete inhibition of pupation, according to the number of teratocytes injected and the developmental stage of the larva at time of injection. Complete pupation failure was observed when teratocytes derived from 4C nigriceps embryos were injected into 1st day 5th instar (new-slender stage) host larvae. Complete pupation occurred when teratocytes from 2 embryos were injected into 3rd or 4th day 5th instars (burrow-digging or day 1 cell formation stage). Intermediate responses, such as the formation of pupal cuticle without ecdysis or with only partial ecdysis, were obtained with intermediate teratocyte numbers, or host developmental stages. All pupae derived from teratocyte injected larvae failed to develop into adults normally obtained from control injected larvae. The larval weight just before pupation was negatively affected only when teratocyte injections were performed on 1st day 5th instar H. virescens larvae. Teratocyte injections altered the hemolymph protein titer to a level similar to that occurring in parasitized larvae. At the same time the ecdysteroid titer was characterized by a late significant increase, which reached values almost 3 times greater than found in normally parasitized larvae, and also surpassed the highest values registered for nonparasitized larvae. Ligation of parasitized larvae between the meso- and metathorax demonstrated that when the prothoracic glands were excluded, there was almost no ecdysteroid production posterior to the ligation. Ligations performed on parasitized larvae to isolate parasitoid eggs before hatching in the last abdominal segments, demonstrated that only virus and venom determined a reduction of the ecdysteroid titer. On the basis of these results the possible role of teratocytes in affecting the biological activity of ecdysteroids is postulated and discussed in a wider context of host-parasitoid physiological interactions.  相似文献   

10.
The solitary endoparasitoid Meteorus pulchricornis can parasitize many lepidopteran host species successfully. In the case of parasitization of Pseudaletia separata, developmental duration of M. pulchricornis was 8-9 days from egg to larval emergence and 6 days from prepupa to adult emergence. Successful parasitism by M. pulchricornis decreased with host age. Following parasitization of day-0 4th host instar, the parasitoid embryo, whilst still enclosed in serosal cell membrane, hatched out of the egg chorion 2 days after oviposition. Subsequently, the 1st instar parasitoid emerged from the surrounding serosal cell membrane. Serosal cells dissociated and developed as teratocytes 3.5 days after oviposition. One embryo of M. pulchricornis gave rise to approximately 1200 teratocytes, a number that remained constant until 6 days after parasitization, but decreased drastically to 200 at 7 days post-oviposition. The teratocytes of M. pulchricornis were round- or oval-shaped and grew from 65 microm at 4 days to 200 microm in the long axis at 6 days post-parasitization. At 4 days post-parasitization, many cells or cell clusters with lipid particles were observed in the hemocoels of parasitized hosts. In addition, paraffin sections of parasitized hosts revealed that many teratocytes were attached to the host's fat body and contributed to disrupting the fat body tissue. Further, examination of the total hemocyte count (THC) during parasitization revealed that THC was maintained at low levels. Surprisingly, a temporal decrease followed by restoration of THC was observed in hosts injected with virus-like particles of M. pulchricornis (MpVLPs) plus venom, which contrasts with the constant THC suppression seen in parasitized hosts. This indicates that MpVLP function is temporal and is involved in regulation of the host during early parasitism. Therefore, teratocytes, a host regulation factor in late parasitism, could be involved in keeping THC at a low level.  相似文献   

11.
12.
Relative effects of parasitism by Microplitis rufiventris on the development of the third instar Spodoptera littoralis (preferable, optimal host) with the development of penultimate (5th) and last (6th) instars (suboptimal hosts) were investigated. Newly molted 6th instar hosts were more acceptable for parasitization by the wasp female than older hosts. In singly parasitized 3rd instar hosts, 82.0 +/- 3.9% of the parasitoid eggs developed to full-grown instar wasp larvae. However, parasitoid eggs deposited singly in 73.9 +/- 3.3% of 5th and 100% of 6th instar hosts failed to develop. Superparasitization in the 3rd instar hosts reduced the production of pseudoparasitized larvae and, conversely, all parasitized hosts yielded viable parasitoid offspring. In suboptimal hosts, the development interaction between the parasitoid and its host larvae was highly influenced by the age of hosts at parasitism, load of deposited eggs, and other parasitoid factors. The latter factors, e.g., mainly calyx fluid particles, might be involved in establishing parasitoid eggs in the suboptimal hosts. In the last two host instars, superparasitization significantly increased the number of parasitoid larvae successfully reaching their final instar. Variation in host quality, e.g., physiological status, might be attributed, in part, to the partial breakdown of the solitary habit observed in the earlier instars. More parasitoid eggs developed to mature parasitoid larvae in hosts superparasitized as 6th instar than parasitoid eggs laid in 5th instar hosts. Superparasitization significantly lengthened the developmental period of 5th and 6th host instars and inhibited their development to the pupal stage. Studying parasitoid development in suboptimal instars of its habitual host provided physiological insight, as shown here. The results may have implication for biological control and in vitro mass rearing programs with solitary parasitoids.  相似文献   

13.
J. S. Hu  S. B. Vinson 《BioControl》1997,42(3):405-415
Effects of host hemolymph, fat body, and epidermal cell extracts on growth and development ofCampoletis sonorensis in vitro were studied. A simple cell culture medium preconditioned with intact fat body for several days improved growth of the parasitoid larvae while the addition of macerated fat body had a negative effect. Addition of co-cultured host epidermal cell mixture, without any preconditioning with the artificial medium, promoted growth and development ofC. sonorensis. The beneficial chemicals in the epidermal cell mixture were larger than 10 kd but were not cold or heat stable. Addition of unparasitized host larval hemolymph improved the hatching and development of the parasitoid larvae in the artificial medium but hemolymph from parasitized hosts did not. Host pupal hemolymph was also found to be beneficial to growth and development ofC. sonorensis. The effective components of pupal hemolymph were also neither cold nor heat stable and had a molecular weight range between 1 kd and 300 kd. While these host-derived growth factors increased molting and growth, they failed to stimulateC. sonorensis to develop to stages beyond the third instar.  相似文献   

14.
Second instar larvae of Lymantria dispar were parasitized or injected with parasitoid-derived factors such as venom, calyx fluid or parasitoid eggs from Glyptapanteles porthetriae . Growth and development of the host larvae were affected in all different groups compared to control larvae of the same age, injected with Ringer solution. The greatest impact on host growth and on the duration of the 3rd instar was caused by injecting parasitoid eggs. Treated larvae showed melanized capsules or nodules in the hemocoel. While the wasp age had no effect on parasitization efficiency or on the percentage of melanized particles in the hemocoel, significantly more encapsulations were found in larvae parasitized by old wasps as opposed to young wasps. Superparasitization (double or quadruple oviposition) increased the parasitization efficiency markedly. While none of the control larvae showed melanized particles, in the groups of single and superparasitized (2× and 4×) hosts a high percentage of melanized particles (capsules and nodules) occurred.  相似文献   

15.
在不同的寄生状态下,菜蛾盘绒茧蜂Cotesia plutellae不同的寄生因子可引起寄主小菜蛾Plutella xylostella幼虫脂肪体结构发生相应的改变。显微和亚显微形态结构显示: 假寄生后多分DNA病毒和毒液对脂肪体结构的完整性没有显著影响,但细胞内脂质体变得小而密集,线粒体和内质网丰富,并有糖原积累; 正常寄生后,脂肪体结构被破坏,多数线粒体内嵴紊乱,脂质体也变得不规则,特别是当幼蜂完成在寄主体内发育时,寄主体内几乎无完整脂肪体存在。与此同时,同批未被寄生的小菜蛾幼虫发育到4龄末期时,体内脂肪体细胞发育正常,已开始向蛹期细胞形态转化,细胞内脂质体很大,细胞器数量较多、糖原积累丰富, 而且部分细胞已成为游离态细胞。由此证明,寄生蜂携带的寄生因子,如多分DNA病毒、毒液、畸形细胞和幼蜂等,均对寄主脂肪体结构的改变产生影响,但程度明显不同。  相似文献   

16.
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.  相似文献   

17.
It was previously demonstrated that parasitization by Cotesia kariyai caused a decrease in weight gain and food consumption in host larvae, resulting in a lower final weight for parasitized hosts. It is predicted that C. kariyai regulates the physiological condition of the host to obtain maximum food under restricted nutritional conditions. Approximate digestibility (AD) was higher following parasitization but the efficiency of conversion of digested food (ECD) of the parasitized hosts was lower. This suggests that resources available to the parasitoid larvae are enhanced in the parasitized hosts. We evaluated the physiological changes caused by injection of calyx fluid (polydnavirus) plus venom (C+V) in nonparasitized hosts. Injection of C+V into the nonparasitized hosts duplicated the effects of parasitism, namely it increased the AD and decreased the ECD. Furthermore, C+V injections elevated trehalose concentrations in nonparasitized host 7 to 10 d after injection (2nd stadium of the parasitoid larva). Protein content also increased on days 9 and 10 after C+V injection. These results suggest that the nutrients that parasitoid larvae require for their growth increase in the hemolymph of the host during the 2nd stadium of the parasitoid larva.  相似文献   

18.
对菜蛾盘绒茧蜂Cotesia plutellae多分DNA病毒的特性及其对寄主小菜蛾Plutella xylostella幼虫的生理效应进行了研究。结果表明:菜蛾盘绒茧蜂雌蜂输卵管萼中含有大量的多分DNA病毒(polydnavirus, PDV);一个PDV内含多个核衣壳,最多可达16个;核衣壳长40~168 nm,直径39~40 nm;PDV仅在输卵管萼细胞内复制;雌蜂产卵时,随蜂卵将PDV注入寄主血腔,并扩散到寄主的许多组织中;PDV可能先通过脱膜再侵染寄主组织。雌蜂经Co60辐射处理后再寄生(即假寄生)小菜蛾2龄、3龄和4龄初期的幼虫,被寄生后的寄主幼虫几乎全部不能化蛹,但末龄(即4龄)幼虫期显著延长,并在寄生后期,幼虫胸部有褐色的短翅芽出现;即将化蛹的4龄末小菜蛾幼虫被假寄生后,即使每头寄主被过寄生9次,依然能正常化蛹,但不能羽化。假寄生与正常寄生后寄主的脂肪体数量和形态结构有明显的不同,推测在正常寄生的情况下蜂卵孵化时释放的畸形细胞及随后的幼蜂可能对脂肪体的结构产生了作用。  相似文献   

19.
Although 5th (last) instar parasitized Manduca sexta larvae undergo developmental arrest and do not wander, they exhibit a small hemolymph ecdysteroid peak (300-400pg/&mgr;l) which begins one day prior to the parasitoid's molt to the 3rd (last) instar and concomitant emergence from the host. Ecdysteroids present in this peak were 20-hydroxyecdysone, 20,26-dihydroxyecdysone and one or more very polar ecdysteroids, as well as small amounts of 26-hydroxyecdysone and ecdysone. In parasitized day-1 and -2 5th instars ligated just behind the 1st abdominal proleg, hemolymph ecdysteroid levels increased in both anterior and posterior portions (100-500pg/&mgr;l), while in unparasitized larvae, hormone levels only increased in the anterior portion (100-350pg/&mgr;l). Thus, the ecdysteroid peak observed in host 5th instars was probably produced, at least in part, by the parasitoids. It may serve to promote Cotesia congregata's molt from the second to the third instar and/or to facilitate parasitoid emergence from the host. In parasitized day-1 and -2 5th instars ligated between the last thoracic and 1st abdominal segments, hemolymph ecdysteroid titers reached much higher levels (500-3500pg/&mgr;l) in the anterior portion (no parasitoids present) than in the posterior portion (150-450pg/&mgr;l). Therefore, it appears that the parasitoid's regulation of hemolymph ecdysteroid titers occurs at two levels. First, parasitization neutralizes the host's ability to maintain its normal hemolymph ecdysteroid levels. Second, in a separate action, the parasitoid manipulates the ecdysteroid-producing machinery so that hemolymph levels are maintained at the 200-400pg/&mgr;l characteristic of day 3-4 hosts. This is the first report of a parasitoid's ability to interfere with the normal inhibitory mechanisms which prevent prothoracic gland production of ecdysteroid at inappropriate periods of insect growth and development.  相似文献   

20.
SDS-PAGE电泳表明,黏虫Pseudaletia separa-ta、棉铃虫 Helicoverpa armigera、小地老虎 Agrotisypsilon的幼虫受中红侧沟茧蜂Microplitis mediator寄生后,血淋巴中都出现一个98.6 kDa的寄生特异蛋白(p98.6)。畸形细胞(teratocytes)的体外培养发现,p98.6是由来自中红侧沟茧蜂胚胎浆膜层的畸形细胞分泌的。这一结果将为研究寄生蜂的寄生生理和畸形细胞在协调寄生蜂和寄主关系中的作用打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号