首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red blood cell-mediated microinjection was used to introduce radioiodinated ubiquitin into ts85 cells, a mouse cell line that contains a thermolabile ubiquitin-activating enzyme (E1). The proportion of ubiquitin present as histone conjugates, high molecular weight conjugates, and free molecules was then determined by gel electrophoresis and autoradiography. When ts85 cells were incubated at the nonpermissive temperature, 39.5 degrees C, high molecular weight conjugates accumulated. This unexpected result was confirmed by Western blot analyses. To determine whether ubiquitin conjugates formed under nonpermissive conditions or merely persisted after the temperature increase, ts85 cells were incubated at 39.5 degrees C to generate large amounts of conjugates and then shifted to 42 degrees C. The higher temperature resulted in a 25% reduction in conjugates, but upon return to 39.5 degrees C, the ubiquitin conjugates were restored to pre-42 degrees C amounts. Since all changes in ubiquitin conjugate levels occurred above 39.5 degrees C, ts85 cells can couple ubiquitin to cellular proteins even after prolonged culture at nonpermissive temperatures. Western blot analyses showed that less than 10% of the E1 molecules present in ts85 cells at 31 degrees C remained after 2 h at 39.5 degrees C. However, when 125I-ubiquitin was added to extracts from heated ts85 cells an apparent high molecular weight form of E1 and thiol ester adducts between ubiquitin and the E2 carrier proteins were detected by electrophoresis at 4 degrees C. Considering both in vivo and in vitro demonstrations that heated ts85 cells retain the ability to conjugate ubiquitin to endogenous proteins, considerable caution must be exercised in the design and interpretation of proteolysis experiments using this mutant cell line.  相似文献   

2.
ts85, a cell line that harbors a mutant thermolabile ubiquitin-activating enzyme, E1, fails to degrade short lived proteins at the restrictive temperature (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, the involvement of the ubiquitin system in the degradation of long lived proteins (most cellular proteins fall in this category) has not been addressed. In the present study we show that upon shifting the mutant cells to the restrictive temperature, there is no change in the rate of degradation of long lived proteins. In contrast, shifting the wild-type cells (FM3A) to the high temperature is accompanied by a 2-fold increase in the rate of proteolysis of this group of proteins. This heat-induced accelerated degradation can be inhibited completely by NH4Cl and chloroquine. Similarly, exposure of the cells to starvation, a stimulus that activates the autophagic-lysosomal pathway, has no effect on the degradation of long lived proteins in the mutant cells after inactivation of E1. Under the same conditions, the degradation rate in the wild-type cells increases almost 4-fold. Analogous results were obtained using a different cell line that also harbors a thermolabile E1 (ts20 (Kulka, R. G., Raboy, B., Schuster, R., Parag, H. A., Diamond, G., Ciechanover, A., and Marcus, M. (1988) J. Biol. Chem. 263, 15726-15731)). Cycloheximide and 3-methyladenine, known inhibitors of formation of autophagic vacuoles, inhibit the heat-induced accelerated degradation of long lived proteins in wild-type cells. Taken together, the results suggest that 1) heat stress induces enhanced degradation of intracellular proteins; 2) the process occurs most probably in autophagic vacuoles; and 3) activation of ubiquitin is required for the formation of these vacuoles. As there is no change in the basal rate of degradation of intracellular proteins in the mutant cells at the restrictive temperature, it appears that the ubiquitin system is not involved in their breakdown.  相似文献   

3.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

4.
Conjugation of ubiquitin to certain proteins can trigger their degradation in the in vitro reticulocyte system. In order to determine whether ubiquitin conjugation serves as an intermediate step in the turnover of cellular proteins in vivo, it is necessary to isolate proteolytic intermediates, i.e. ubiquitin-protein adducts of specific cellular proteins. While the steady-state level of conjugates of rapidly turning over proteins is relatively high, that of long-lived proteins is presumably extremely low, and therefore undetectable. Therefore, mutant cell lines with conditionally altered function(s) of the ubiquitin system can serve as powerful tools in studying the degradation of stable cellular proteins. We have characterized a temperature sensitive cell cycle arrest mutant cell (ts85) with a thermolabile ubiquitin-activating enzyme (E1; Finley, D., Ciechanover, A., and Varshavsky, A. (1984) Cell 37, 43-55). Following incubation at the restrictive temperature (39.5 degrees C), these cells fail to degrade short-lived proteins (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, involvement of the ubiquitin system in the turnover of long-lived proteins has not been addressed in these cells. A slow rate of inactivation of E1 in vivo, and significant rate of cell death following long incubation periods at the restrictive temperature, make this question difficult to address experimentally. In the present study we show that incubation of the cells for 1 h at 43 degrees C leads to rapid inactivation of ubiquitin conjugation in the intact mutant cell. Following heat treatment, the cells can be incubated at 39.5 degrees C for at least 6 h in order to study the possible involvement of the system in the turnover of long-lived cellular proteins. The viability of the cells is excellent at the end of the incubation. Following extraction, we have shown that inactivation occurs much more rapidly in the cell lysate in vitro than in the intact cell (t1/2 of 10 min compared to 4 h at 39.5 degrees C). The enzyme from both the mutant cell and the wild-type cell was purified to homogeneity. The molecular mass of the native enzyme from both cells is approximately 220 kDa with a subunit molecular mass of about 108 kDa. The structure of the enzyme is therefore very similar to that purified from rabbit reticulocytes. At the permissive temperature, the enzymes from both cells catalyze ATP-PPi and ATP-AMP exchange in similar kinetics. However, at the high temperature, the mutated enzyme is at least 7-fold less stable than the wild-type enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

6.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

7.
The cytolytic effect of the autonomous parvovirus minute virus of mice, prototype strain (MVMp), was studied in cultures of ts 339/NRK rat cells that display a temperature-sensitive transformed phenotype as a result of their transformation with a Rous sarcoma virus strain matured in the v-src oncogene. A shift from restrictive (39.5 degrees C) to permissive (34.5 degrees C) temperature was associated with a marked sensitization of these cells to killing by MVMp. In contrast, ts 339/NRK cell derivatives supertransformed with a wild-type src oncogene were sensitive to MVMp at both temperatures, suggesting that the expression of a functional oncogene product may determine, at least in part, the extent of the parvoviral cytopathic effect. Although ts 339/NRK cells were quite resistant to parvoviral attack at 39.5 degrees C, they were similarly proficient in MVMp uptake, viral DNA and protein synthesis, and infectious particle production at both permissive and restrictive temperatures. Consistently, electron microscopic examination of infected ts 339/NRK cultures incubated at 39.5 degrees C revealed the presence, in the majority of the cells, of numerous full and empty virions that were predominantly located in autophagic-type vacuoles. Thus, in this system, the reversion of transformed and MVMp-sensitive phenotypes appears to correlate with the setting up of a noncytocidal mode of parvovirus production. These results raise the possibility that the physiological state of host cells may affect their susceptibility to parvoviruses by modulating not only their capacity for virus replication but also cellular processes controlling the cytopathic effect of viral products.  相似文献   

8.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

9.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

10.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

11.
Virus particles, lacking the spike G-glycoproteins, are produced during infection of Vero cells with the vesicular stomatitis virus mutant ts045 at the restrictive temperature 39.5 degrees C. At this temperature the mutated G proteins are blocked in their intracellular transport in the endoplasmic reticulum. We have studied the role of the G proteins in the formation of these spikeless virus particles. The results showed that the spikeless particles contain a full complement of membrane anchors, derived from the carboxy-terminal end of the G protein. Our observations suggest that virus particles are formed at the restrictive temperature with G protein which is later cleaved to produce spikeless particles. We suggest that this is due to a leak of G protein to the cell surface at 39.5 degrees C where budding then takes place, presumably driven by a G protein C-terminal tail--nucleocapsid interaction.  相似文献   

12.
Infection of African green monkey kidney cells with type 5 adenovirus leads to the synthesis of two infected, cell-specific proteins with approximate molecular weights of 72,000 and 48,000, that bind specifically to single-stranded but not double-stranded DNA. The production of these two proteins was studied after infection with two DNA-negative adenovirus mutants belonging to different complementation groups (H5 ts36 and H5 ts 125). Both DNA binding proteins were detected in cells infected with either mutant at the permissive temperature (32 C) AND ALSO IN H5 ts36-infected cells at the nonpermissive temperature (39.5 C). In H5 ts125-infected cells at 39.5 C, however, less than 5% of the normal wild-type level of these DNA binding proteins was detectable. When H5 ts125-infected cells were labeled with radioactive leucine at 32 C and subsequently shifted to 39.5 C in the presence of unlabeled leucine (chase), the level of DNA binding proteins found in these infected cells was markedly reduced compared to cultures not shifted to 39.5 C. These data suggest that the DNA binding proteins themselves were temperature sensitive. This conclusion was confirmed by experiments in which the DNA binding proteins were eluted from DNA cellulose with buffers of increasing temperatures (thermal elution). The H5 ts 125 proteins were shown to elute at lower temperatures than either wild-type or H5 ts36 proteins. These results are taken to indicate that the H5 ts125 mutant codes for a DNA binding protein that is thermolabile for continued binding to single-stranded DNA.  相似文献   

13.
A group of 43 phosphonoacetic acid (PAA)-resistant mutants of herpes simplex virus type 1 was isolated after the mutagenesis of infected cells with nitrosoguanidine. One of these mutants, designated PAA1rts1, was found to be temperature sensitive (ts), that is, unable to replicate at 39.5 degrees C, the nonpermissive temperature. Recombination analysis of PAA1rts1 indicated that the PAA1r mutation and the ts1 mutation are loosely linked and are located on two separate genes. PAA1rts1 showed a defect in viral DNA synthesis at 39.5 degrees C, which presumably can be attributed to the production of a PAA-resistant and thermolabile DNA polymerase. PAA1rts1 was also defective in the shutoff of host DNA synthesis at the restrictive temperature.  相似文献   

14.
tsJT60, a temperature-sensitive (ts) mutant cell line of Fischer rat, is viable at both permissive (34 degrees C) and non-permissive (39.5 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with fetal bovine serum (FBS) from G0 phase they re-enter S phase at 34 degrees C but not at 39.5 degrees. When tsJT60 cells were transformed with adenovirus (Ad) 5 wild type, they grew well at both temperatures, expressed E1A and E1B genes, and formed colonies in soft agar. When tsJT60 cells were transformed with Ad5 dl313, that lacks E1B gene, the transformed cells grew well at 34 degrees C but failed to form colony in soft agar. They died very soon at 39.5 degrees C. 3Y1 cells (a parental line of tsJT60) transformed with dl313 grew well at both temperatures, although neither expressed E1B gene nor formed colonies in soft agar. The phenotype of being lethal at 39.5 degrees C of dl313-transformed tsJT60 cells was complemented by cell fusion with 3Y1BUr cells (5-BrdU-resistant 3Y1), but not with tsJT60TGr cells (6-thioguanine resistant tsJT60). These results indicate that the lethal phenotype is related to the ts mutation of tsJT60 cells and also to the deletion of E1B gene of Ad5.  相似文献   

15.
We have isolated a temperature-sensitive alanyl-tRNA synthetase mutant from hamster BHK21 cells, designated as ts ET12. It has a single nucleotide mutation, converting the 321st amino acid residue, 321Gly, to Arg. The mutation was localized between two RNA-binding domains of alanyl-tRNA synthetase. Thus far, we have isolated two temperature-sensitive aminoacyl-tRNA synthetase mutants from the BHK21 cell line: ts BN250 and ts BN269. They are defective in histidyl- and lysyl-tRNA synthetase respectively. Both mutants rapidly undergo apoptosis at the nonpermissive temperature, 39.5 degrees C. ts ET12 cells, however, did not undergo apoptosis until 48 h after a temperature-shift to 39.5 degrees C, while mutated alanyl-tRNA synthetase of ts ET12 cells was lost within 4 h. Loss of the mutated alanyl-tRNA synthetase was inhibited by a ubiquitin-dependent proteasome inhibitor, MG132, and by a protein-synthesis inhibitor, cycloheximide. Cell-cycle related proteins were also lost in ts ET12 cells at 39.5 degrees C, as shown in ts BN250. In contrast, the mutated aminoacyl-tRNA synthetases of ts BN250 and ts BN269 were stable at 39.5 degrees C. However, the defects of these mutants released EMAPII, an inducer of apoptosis at 39.5 degrees C. No release of EMAPII occurred in ts ET12 cells at 39.5 degrees C, consistent with the delay of apoptosis in these cells.  相似文献   

16.
Protein ubiquitination plays critical roles in the regulation of multiple cellular processes including cell proliferation, signal transduction, oncogenesis, and hypoxic response. TS20 is a Balb3T3-derived cell line in which ubiquitination is inhibited by restrictive temperature. While TS20 has been used to elucidate the degradation of many important proteins including p53, p27, HIF-1α, and ornithine decarboxylase, the molecular basis of its temperature sensitivity has not been fully determined. We cloned full-length E1 cDNA from TS20. Sequencing analysis revealed two point mutations (nt736G to A and nt2313G to C) that lead to substitution of aa189A to T and aa714W to C, respectively. Transient transfection assays revealed that mutant E1 was less stable than its wild-type counterpart, and restrictive temperature (39°C) accelerated its degradation. Under permissive temperature, reverting aa714C to W significantly improved E1 stability and activity. Under restrictive temperature, reverting of both substitutions was required to fully restore E1 stability. Similar results were observed when the mutants were expressed in non-TS20 cells, indicating the mutations are sufficient for its temperature sensitive degradation observed in TS20 cells. Functionally, reverting aa714C to W was sufficient to facilitate the monoubiquitination of H2A and to support TS20 growth at 39°C. It also significantly improved the ubiquitination-dependent disposal of HIF-1α. Our data conclusively demonstrate that mutations introgenic to UVBE1 cause E1 instability, which leads to deficiency of E1 function. Our data establish the molecular basis for unambiguous interpretation of experimental data based on TS20 cells, and provide new insight into the structural determinants of E1 stability.  相似文献   

17.
Comparative two-dimensional gel electrophoretic studies were performed on mitochondrial proteins in nontransformed mouse 3T3 cells and in SV40-transformed 3T3 cells, SV-T2. Two polypeptides, of 58 and 40 kDa, were present in increased amounts in SV40-transformed cells. These polypeptides were demonstrated to be nuclear-coded mitochondrial proteins by their absence in mitochondrial preparations, when labeling was performed in the presence of a mitochondrial-specific inhibitor, Rhodamine 6G. Temperature-sensitive mutants for transformation were derived from 3T3 cells by transfection with cloned SV40 DNA containing the ts A58 mutation. Increased amounts of the 58 kDa protein were apparent in these cells at the permissive temperature (33 degrees C) compared to the restrictive temperature (39.5 degrees C).  相似文献   

18.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

19.
We have analyzed the relationship between expression of the transformed phenotype and thyroid hormone (triiodothyronine, T3) inducibility of Na,K-ATPase and binding of 125I-epidermal growth factor (EGF) to cell membrane receptors in wild-type (wt) and mutant type 5 adenovirus (Ad5)-transformed CREF cells displaying a cold-sensitive (cs) expression of the transformed phenotype. CREF cells respond to thyroid hormone treatment with increased Na,K-ATPase activity and bind similar levels of 125I-EGF at 32 degrees C, 37 degrees C and 39.5 degrees C. In contrast, CREF cells transformed by wt Ad5 or the E1a plus E1b-transforming genes of wt Ad5 are refractile to T3 treatment and bind lower levels of 125I-EGF than CREF cells at all three temperatures. By employing a series of cloned CREF cell lines transformed by a host-range cold-sensitive mutant virus, H5hr1 or H5dl101, or the E1a or E1a plus E1b genes from these viruses, we have investigated expression of the transformed state and its relationship with hormone inducibility and EGF binding. When cs virus, cs E1a- or cs E1a plus E1b-transformed CREF clones were grown at 32 degrees C, a nonpermissive transforming temperature in which cs-transformed cells exhibit properties similar to untransformed CREF cells, T3 induced Na,K-ATPase activity and these cells bound similar levels of 125I-EGF as CREF cells. However, when cs virus- and cs Ela plus E1b-transformed CREF clones were incubated at 37 degrees C or 39.5 degrees C, temperatures at which cs-transformed cells exhibit properties similar to wt Ad5-transformed CREF cells, they did not respond to T3 and bound lower levels of 125I-EGF than CREF cells. In the case of cs E1a-transformed CREF clones, thyroid hormone responsiveness was observed at both 32 degrees C and 37 degrees C, but not at 39.5 degrees C. By performing temperature shift experiments--i.e. 32 degrees C to 37 degrees C, 32 degrees C to 39.5 degrees C, 37 degrees C to 32 degrees C, and 39.5 degrees C to 32 degrees C, it was demonstrated that after a shift from lower to higher temperature a 24-hr lag period was required for cs-transformed CREF cells to lose T3 inducibility and exhibit reduced EGF binding, whereas 96 hr after a shift from higher to lower temperature a 96-hr lag period was required for cs-transformed cells to regain T3 inducibility and increased 125I-EGF binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The involvement of altered protein metabolism in the expression of the temperature-sensitive (ts) pleiotropic phenotype of ts A1S9 cells was investigated. Cells are ts in growth and DNA replication. They undergo decondensation of their heterochromatin, interruptions of chromatin synthesis, and changes in cell size and morphology at the non-permissive temperature (npt) of 38.5 degrees C. Whereas the rates of incorporation of 3H-leucine, 35S-methionine, and 3H-fucose into proteins were unaffected at 38.5 degrees C, net protein accumulation was greatly reduced. This imbalance resulted from a rapid increase in the rate of protein degradation at the npt. Enhancement of protein degradation was detected within 2-4 hours after temperature upshift and constitutes the earliest metabolic alteration thus far observed during expression of the temperature-sensitive phenotype. The average half-life of proteins performed in ts A1S9 cells at 34 degrees C was decreased four-fold at the npt, and all major cytoplasmic proteins were affected equally. Enhanced protein degradation at the npt was shown to be sensitive to cycloheximide, ammonia, chloroquine, and vinblastine at concentrations that did not affect the basal protein degradation of normally cycling cells. Increased protein degradation at 38.5 degrees C did not involve an equivalent increase in total cellular protease activity. The data obtained are compatible with a model that suggests that temperature inactivation of the ts A1S9 gene product results in activation of a lysosome-mediated mechanism for the rapid degradation of cytoplasmic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号