首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

2.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

3.
Summary We used sonar to measure relative abundance, location, and depth of prey fish schools (primarily Anchoa and Ammodytes) in the ocean near Fire Island Inlet, New York from May to August for 4 years to examine predatorprey interactions. Prey fish numbers built through May, peaked in June, and thereafter declined coincident with the arrival of predatory bluefish. Bluefish abundance and feeding behavior correlated inversely with prey fish abundance and depth. Bluefish may drive seasonal patterns of prey abundance and distribution in this area through direct predation and by causing prey to flee.  相似文献   

4.
Linkages between estuarine nursery areas and coastal reefs are thought to be important for sustaining populations of some reef fishes. Patterns of abundance and size structure in the blue groper, Achoerodus viridis (Pisces: Labridae), were documented at sites extending from sheltered reefs and seagrass, Zostera capricorni, habitats, in shallows of estuaries, to adjacent exposed reefs in New South Wales, Australia. Numbers of juvenile fish (< 200 mm SL) decreased from shallow to deep areas of reef within a site and from inner to outer estuarine sites within two estuaries. Increased numbers of large fish (> 400 mm SL) were found on the more exposed coastal reefs. These patterns were consistent over the 21/2 year study (May 1991–December 1993). Recruits were found in both seagrass and rocky reef habitat, and showed similar patterns of abundance to juveniles. Recruitment of A. viridis to seagrass habitat occurred in distinct seasonal pulses each year; peak recruitment occurred in September and October of each year. Patterns of abundance and size structure were consistent with a model of estuarine recruitment and movement to the open coast, but alternatives, such as differential mortality, could not be discounted.  相似文献   

5.
Nearly all saltmarshes in east-central, Florida were impounded for mosquito control during the 1960s. The majority of these marshes have since been reconnected to the estuary by culverts, providing an opportunity to effectively measure exchange of aquatic organisms. A multi-gear approach was used monthly to simultaneously estimate fish standing stock (cast net), fish exchange with the estuary (culvert traps), and piscivore abundance (gill nets and bird counts) to document patterns of fish use in a reconnected saltmarsh impoundment. Changes in saltmarsh fish abundance, and exchange of fish with the estuary reflected the seasonal pattern of marsh flooding in the northern Indian River Lagoon system. During a 6-month period of marsh flooding, resident fish had continuous access to the marsh surface. Large piscivorous fish regularly entered the impoundment via creeks and ditches to prey upon small resident fish, and piscivorous birds aggregated following major fish movements to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fish concentrated into deep habitats and emigration to the estuary ensued (200% greater biomass left the impoundment than entered). Fish abundance and community structure along the estuary shoreline (although fringed with marsh vegetation) were not analogous to marsh creeks and ditches. Perimeter ditches provided deep-water habitat for large estuarine predators, and shallow creeks served as an alternative habitat for resident fish when the marsh surface was dry. Use of the impoundment as nursery by transients was limited to Mugil cephalus Linnaeus, but large juvenile and adult piscivorous fish used the impoundment for feeding. In conclusion, the saltmarsh impoundment was a feeding site for piscivorous fish and birds, and functioned as a net exporter of forage fish to adjacent estuarine waters.  相似文献   

6.
Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three‐dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for creating large‐scale reefs has led to widespread use of other materials such as Surf clamshell (Spisula solidissima), as a substitute for oyster shell. Oyster recruitment, survival, and growth were monitored on intertidal reefs constructed from oyster and Surf clamshell near Fisherman’s Island, Virginia, U.S.A. and on a subtidal Surf clamshell reef in York River, Virginia, U.S.A. At the intertidal reefs, oyster larvae settlement occurred at similar levels on both substrate types throughout the monitoring period but higher levels of post‐settlement mortality occurred on clamshell reefs. The oyster shell reef supported greater oyster growth and survival and offered the highest degree of structural complexity. On the subtidal clamshell reef, the quality of the substrate varied with reef elevation. Large shell fragments and intact valves were scattered around the reef base, whereas small, tightly packed shell fragments paved the crest and flank of the reef mound. Oysters were more abundant and larger at the base of this reef and less abundant and smaller on the reef crest. The availability of interstitial space and appropriate settlement surfaces is hypothesized to account for the observed differences in oyster abundance across the reef systems. Patterns observed emphasize the importance of appropriate substrate selection for restoration activities to enhance natural recovery where an underlying habitat structure is destroyed.  相似文献   

7.
Oyster reefs are among the most threatened coastal habitat types, but still provide critical habitat and food resources for many estuarine species. The structure of oyster reef food webs is an important framework from which to examine the role of these reefs in supporting high densities of associated fishes. We identified major trophic pathways to two abundant consumers, gray snapper (Lutjanus griseus) and crested goby (Lophogobius cyprinoides), from a subtropical oyster reef using stomach content and stable isotope analysis. The diet of gray snapper was dominated by crabs, with shrimp and fishes also important. Juvenile gray snapper fed almost entirely on oyster reef-associated prey items, while subadults fed on both oyster reef- and mangrove-associated prey. Based on trophic guilds of the gray snapper prey, as well as relative δ13C values, microphytobenthos is the most likely basal resource pool supporting gray snapper production on oyster reefs. Crested goby had omnivorous diets dominated by bivalves, small crabs, detritus, and algae, and thus were able to take advantage of prey relying on production from sestonic, as well as microphytobenthos, source pools. In this way, crested goby represent a critical link of sestonic production to higher trophic levels. These results highlight major trophic pathways supporting secondary production in oyster reef habitat, thereby elucidating the feeding relationships that render oyster reef critical habitat for many ecologically and economically important fish species.  相似文献   

8.
Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef‐derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.  相似文献   

9.
Piscivorous fishes tend to be able to consume other fishes early in development and generally experience a dramatic increase in growth after the ontogenetic diet shift to piscine prey. Hence, an acceleration of the onset of piscivory may be favoured strongly by natural selection. Temperate freshwater piscivores, for example, becomes piscivorous at a relatively young age by spawning in advance of, and thereby achieving a size advantage over, the young of their piscine prey. Research in various North American estuaries suggests that young-of-the-year (YOY) bluefish Pomatomus saltatrix , an offshore-spawning estuarine-dependent marine fish, may accelerate the onset of piscivory by being advected to higher latitudes and timing their estuarine entry with the appearance of small coastal fishes. This hypothesis was tested by: (i) determining the annual recruitment date of YOY bluefish and their prey; and (ii) examining the diet and prey size preferences, and predator size-prey size relationships, of YOY bluefish in two different estuarine systems: Great South Bay, and the lower Hudson River. Results suggest that the relationships between bluefish and their prey are determined by a complex interplay between recruitment timing of both predator and prey, prey size availability, predator selectivities, and the timing of vernal warming. It is concluded that YOY bluefish migration into northern estuaries at an advanced size provides them with a predatory size advantage over their principal piscine prey thereby facilitating an early diet shift to piscivory white minimizing the time spent as planktivores.  相似文献   

10.
This study demonstrates experimentally that coarse woody debris (CWD) can provide refuge from predation in aquatic habitats. In the Rhode River subestuary of Chesapeake Bay, Maryland, (USA), we (1) measured the abundance of CWD, (2) examined the utilization of CWD by mobile epibenthic fish and crustaceans, and (3) tested experimentally the value of CWD as a refuge from predation. CWD was the dominant above-bottom physical structure in shallow water, ranging in size from small branches (<2 cm diameter) to fallen trees (>50 cm diameter). In response to experimental additions of CWD, densities of common epibenthic cpecies (Callinectes sapidus, Fundulus heteroclitus, Fundulus majalis, Gobiosoma bosc, Gobiesox strumosus, Palaemonetes pugio, and Rithropanopeus harrisii) increased significantly compared to control sites without CWD. In laboratory experiments, grass shrimp (P. pugio) responded to predatory fish (F. heteroclitus and Micropogonias undulatus) by utilizing shelter at CWD more frequently than in absence of fish. Access to CWD increased survivorship of grass shrimp in laboratory and field experiments. These experimental results (1) support the hypothesis, commonly proposed but untested for freshwater habitats, that CWD can provide a refuge from predation for epibenthic fish and invertebrates and (2) extend the recognized functional importance of CWD in freshwater to estuarine and marine communities. We hypothesize that CWD is an especially important refuge habitat in the many estuarine and freshwater systems for which alternative physical structure (e.g., vegetation or oyster reefs) are absent or in low abundance.  相似文献   

11.
江苏海门蛎岈山牡蛎礁生态现状评价   总被引:4,自引:2,他引:2  
基于2013—2014年间的生态调查结果,评价了江苏海门蛎岈山牡蛎礁的生态现状。无人机航拍结果显示,江苏海门蛎岈山分布有750个潮间带区牡蛎礁斑块,总面积约为201519.37 m2;与2003年相比,海门蛎岈山牡蛎礁面积约下降了38.8%。活体牡蛎的平均盖度约为66%,2013年5和9月熊本牡蛎Crassostrea sikamea的平均密度分别为(2199±363)个/m2和(2894±330)个/m2。2013年5月海门蛎岈山熊本牡蛎种群的平均肥满度(CI)和性腺指数(GI)分别为(9.76±0.95)%和(1013±82)mg/g,均显著低于浙江象山港养殖的熊本牡蛎种群(P0.05)。海门蛎岈山熊本牡蛎的单倍体多样性和核苷酸多样性指数分别为0.119和0.00028,均高于长江口野生种群和浙江象山港养殖种群。海门蛎岈山熊本牡蛎种群受到尼氏单孢子虫(Haplosporidium nelson)的轻度浸染,其感染率(17.2%)低于浙江象山港养殖群体(47.3%)。泥沙沉积和人类捕捞是江苏海门蛎岈山牡蛎礁面临的主要胁迫因子,今后牡蛎礁恢复的重点是增加附着底物的数量。  相似文献   

12.
Within estuarine and coastal ecosystems globally, extensive habitat degradation and loss threaten critical ecosystem functions and necessitate widescale restoration efforts. There is abundant evidence that ecological processes and species interactions can vary with habitat characteristics, which has important implications for the design and implementation of restoration efforts aimed at enhancing specific ecosystem functions and services. We conducted an experiment examining how habitat characteristics (presence; edge vs. interior) influence the communities of resident fish and mobile invertebrates on restored oyster (Crassostrea virginica) reefs. Similar to previous studies, we found that restored reefs altered community composition and augmented total abundance and biomass relative to unstructured sand habitat. Community composition and biomass also differed between the edge and interior of individual reefs as a result of species-specific patterns over small spatial scales. These patterns were only weakly linked to oyster density, suggesting that other factors that vary between edge and interior (e.g. predator access or species interactions) are likely more important for community structure on oyster reefs. Fine-scale information on resident species' use of oyster reefs will help facilitate restoration by allowing decision makers to optimize the amount of edge versus interior habitat. To improve the prediction of faunal use and benefits from habitat restoration, we recommend investigations into the mechanisms shaping edge and interior preferences on oyster reefs.  相似文献   

13.
Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5–20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving settlement and recruitment patterns in marine communities.  相似文献   

14.
Synopsis We quantified bluespine unicornfish, Naso unicornis, movement patterns, home range size and habitat preferences in a small Hawaiian marine reserve. Bluespine unicornfish were site-attached to home ranges situated within the reserve boundaries and their movements were aligned with topographic features. Two different diel movement patterns (‘commuting’ and ‘foraying’) were observed. Commuters made crepuscular migrations of several hundred meters between daytime foraging areas and nighttime refuge holes. Foraying fish did not partake in crepuscular migrations and utilized refuge holes both day and night. Two bluespine unicornfish were also nocturnally active. There was little direct evidence of dispersal from the reserve but differences in bluespine unicornfish abundance and size among reef habitat zones were consistent with ontogenetic habitat shifts. The influence of habitat topography on bluespine unicornfish movements suggests that gross habitat characteristics could be used to predict reef fish movements. This could provide a simple method for setting marine reserve boundaries at sites for which empirical fish movement data are unavailable.  相似文献   

15.
We measured sediment properties and the abundance and aerobic metabolism of microbes in Willapa Bay, Washington, USA, to test the response of sediment microbes to oyster aquaculture. Sites spanned the estuary gradient (practical salinity units ranged from 24 to 30 under seasonally low river flows) and six different low-intertidal habitat types: eelgrass (Zostera marina), unstructured tideflat, oyster hummocks (reefs of Crassostrea gigas), longline oyster aquaculture, hand-picked on-bottom oyster aquaculture, and dredged on-bottom oyster aquaculture. Aerobic metabolism was assessed by sole-source carbon use (SSCU) of 31 carbon sources on Biolog plates. Sediments generally became siltier and more organically enriched into the estuary, but no consistent differences in sediment properties occurred across habitat types. Bacterial cell density tracked organic content. Across the estuary gradient, overall aerobic SSCU increased less steeply than bacterial cell density, possibly as anaerobic metabolism became more important. Across habitats, aerobic SSCU differed significantly in both overall metabolism and diversity of carbon sources. Aerobic metabolism was generally lower for sediment microbes from intertidal on-bottom oyster aquaculture than from eelgrass. Humans indirectly alter microbial activity through biogenic habitats created during aquaculture, but, as has been shown for bivalves more generally, these changes were relatively small, particularly in comparison to sediment changes along estuarine gradients.  相似文献   

16.
Aim The objective of this study was to investigate the influence of protection duration (years of fishing closure) and location (distance from shore) on reef fish diversity. Location Danajon Double Barrier Reef, Bohol, Philippines. Methods Reef fish abundance and size structure, by species, were obtained monthly using replicated underwater visual belt transects (n = 8; 70 × 5‐m belt transects) over 3 years (2002–2005) at eight sites that included six marine reserves and two unprotected reef areas. We analysed species accumulation curves, diversity indices and abundance–biomass comparison (ABC) curves within and across the study sites to assess the influence of protection duration and location. Results Analyses showed that longer protection duration impacted reef fish diversity at both inshore and offshore sites by shifting ABC curves from higher abundance than biomass curves at fished sites to higher biomass than abundance curves at most of the protected sites. Protection duration did not significantly influence either the rate of species accumulation within sites or the 12 diversity indices measured across the study sites. The offshore sites consistently showed higher rates of species accumulation and diversity indices values than inshore sites with similar protection duration. One protected offshore young marine reserve site that has been assessed as the least well‐managed showed patterns more consistent with the fished sites. Main conclusions Analyses showed that protection duration mainly impacted diversity by increasing the dominance of large‐bodied species and enhancing total biomass. Besides protection duration, reserve location influenced species accumulation curves and diversity indices.  相似文献   

17.
While herbivory is recognized as a fundamental process structuring coral reef communities, herbivore assemblages and processes are poorly described for reefs in the Indian Ocean region. We quantified herbivorous fish assemblage structure (abundance and diversity) in Laamu Atoll, Republic of Maldives, in four reef habitat types: faro reef flats, faro reef slopes, inner and outer atoll reef slopes (20 sites in total). Herbivorous fish assemblages, representing a total of 30 species, grouped strongly by habitat type, with the highest absolute abundance observed on faro reef flats and lowest abundance on inside atoll rim reef slopes. Removal of Thalassia seagrass blades by ambient herbivore assemblages was used in a bioassay to assess relative herbivory pressure among four habitat types (eight sites). Also, at one site a choice herbivory assay was performed to assess herbivore preference among four benthic plants across three depth zones. Relative herbivory, as indicated by Thalassia assays, was highest on inside atoll rim reef slopes and lowest on outside atoll rim reef slopes. Thalassia consumption did not correspond to overall herbivorous fish abundance, but corresponded more closely with parrotfish abundance. In the choice assays, herbivores showed strong preferences among plant types and consumption of most plant types was higher at mid-depth than in the shallow reef flat or deep reef knoll zones.  相似文献   

18.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

19.
Suitability of small (< 1km2) marine reserves for protecting a commercially important endemic Hawaiian goatfish, Parupeneus porphyreus, was examined by quantifying goatfish habitat use, home range size and site fidelity in an existing marine reserve (Coconut Island in Kaneohe Bay, Hawaii). Five goatfish equipped with acoustic transmitters were tracked for up to 93h each over 3–14 days. Daytime habitat use patterns of two of these fish were continuously monitored for one month using a fixed hydrophone hardwired to an onshore computer. Acoustically tagged fish showed consistent diel patterns of behavior, refuging in holes in the reef by day and moving over extensive areas of sand and coral rubble habitat at night. Remote monitoring of daytime habitat use by two goatfish revealed that the same daytime refuge was used by both fish for at least one month (the battery life of the transmitters). Home ranges of all fish were within the boundaries of the Coconut Island reserve suggesting that even small areas containing suitable habitat can make effective reserves for this species. A relatively low abundance of reproductive size P. porphyreus at Coconut Island in comparison with deeper areas may indicate an ontogenetic shift to deeper habitat in this species.  相似文献   

20.
Coral restoration is widely used around the world to address dramatic declines in coral cover; however, very few studies have looked specifically at the temporal response of fish assemblages (i.e. abundance and diversity) to coral restoration. Several critical reef functions and processes are driven by fishes, thereby making their recovery and responses around restoration structures key indicators of success. This study evaluates fish abundance and community composition on restoration plots following 8–12 years of restoration activity, in four locations (two Caribbean and two Indo‐Pacific). Responses were very complex with region‐, site‐, and body size‐specific patterns. Overall, fish abundance only increased in Indo‐Pacific sites where damselfish responded positively to increased coral cover and topographic complexity. Restoration effects on other fish families and particularly on larger bodied reef fish were negative or neutral at all locations. If restoration initiatives are going to substantively improve the condition and recovery of degraded reef fish communities, restoration efforts need to be planned, designed, and monitored based on fish‐specific habitat requirements and locally specific community dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号