首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The construction of a delivery and clearing system for the generation of food-grade recombinant lactic acid bacterium strains, based on the use of an integrase (Int) and a resolvo-invertase (β-recombinase) and their respective target sites (attP-attB and six, respectively) is reported. The delivery system contains a heterologous replication origin and antibiotic resistance markers surrounded by two directly oriented six sites, a multiple cloning site where passenger DNA could be inserted (e.g., the cI gene of bacteriophage A2), the int gene, and the attP site of phage A2. The clearing system provides a plasmid-borne gene encoding β-recombinase. The nonreplicative vector-borne delivery system was transformed into Lactobacillus casei ATCC 393 and, by site-specific recombination, integrated as a single copy in an orientation- and Int-dependent manner into the attB site present in the genome of the host strain. The transfer of the clearing system into this strain, with the subsequent expression of the β-recombinase, led to site-specific DNA resolution of the non-food-grade DNA. These methods were validated by the construction of a stable food-grade L. casei ATCC 393-derived strain completely immune to phage A2 infection during milk fermentation.  相似文献   

2.
A general strategy was applied to implement resistance against temperate bacteriophages that infect food fermentation starters through cloning and expression of the phage repressor. Lactobacillus casei ATCC 393 and phage A2 were used to demonstrate its feasibility as milk fermentation is drastically inhibited when the strain is infected by this phage. The engineered strain Lact. casei EM40::cI, which has the A2 repressor gene (cI) integrated into the genome, was completely resistant and able to ferment milk whether phage was present or not. In addition, viable phages were eliminated from the milk, probably through adsorption to the cell wall. Finally, the integration of cI in the genome resulted in a stable resistance phenotype, being unnecessary selective pressure during milk fermentation.  相似文献   

3.
The goal of this study was to develop a method allowing rapid identification of the lactic acid bacteria strains in use in the laboratory (Lactobacillus plantarum NCIMB8826; L. fermentum KLD; L. reuteri 100-23; L. salivarius UCC43321; L. paracasei LbTGS1.4; L. casei ATCC393), based on PCR amplification of 16S RNA coding sequences. First, specific forward oligonucleotides were designed in the variable regions of 16S RNA coding sequences of six Lactobacillus strains. The reverse oligonucleotide was designed in the region where the sequences were homologous for the six strains. The expected size of the amplification product was +/-1000 bp. The specificity of the method was tested on total chromosomal DNA. For five out of the six strains, the amplification of the fragment was strain-specific and the method was directly applicable to colonies. For the strain L. casei ATCC393, an additional argument to the classification of this bacteria in the paracasei group could be proposed. Validation of the developed method was performed by applying it to six Lactobacillus reference strains and to various species of bacteria.  相似文献   

4.
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.  相似文献   

5.
The temperate bacteriophage phi adh integrates its genome into the chromosomal DNA of Lactobacillus gasseri ADH by a site-specific recombination process. Southern hybridization analysis of BclI-digested genomic DNA from six relysogenized derivatives of the prophage-cured strain NCK102 displayed phage-chromosomal junction fragments identical to those of the lysogenic parent. The phi adh attachment site sequence, attP, was located within a 365-bp EcoRI-HindIII fragment of phage phi adh. This fragment was cloned and sequenced. DNA sequence analysis revealed striking features common to the attachment sites of other site-specific recombination systems: five direct repeats of the sequence TGTCCCTTTT(C/T) and a 14-bp inverted repeat. Oligonucleotides derived from the sequence of the attP-containing fragment enabled us to amplify predicted junction fragment sequences and thus to identify attL, attR, and attB. The core region was defined as the 16-bp sequence TACACTTCTTAGGAGG. Phage-encoded functions essential for site-specific insertion of phage phi adh were located in a 4.5-kb BclI fragment. This fragment was cloned in plasmid pSA34 to generate the insertional vector pTRK182. Plasmid pTRK182 was introduced into L. gasseri NCK102 by electroporation. Hybridization analysis showed that a single copy of pTRK182 had integrated at the attB site of the NCK102 erythromycin-resistant transformants. This is the first site-specific recombination system described in lactobacilli, as well as the first attP-based site-specific integration vector constructed for L. gasseri ADH.  相似文献   

6.
A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.  相似文献   

7.
The development of new strategies for the in vivo modification of eukaryotic genomes has become an important objective of current research. Site-specific recombination has proven useful, as it allows controlled manipulation of murine, plant, and yeast genomes. Here we provide the first evidence that the prokaryotic site-specific recombinase (beta-recombinase), which catalyzes only intramolecular recombination, is active in eukaryotic environments. beta-Recombinase, encoded by the beta gene of the Gram-positive broad host range plasmid pSM19035, has been functionally expressed in eukaryotic cell lines, demonstrating high avidity for the nuclear compartment and forming a clear speckled pattern when assayed by indirect immunofluorescence. In simian COS-1 cells, transient beta-recombinase expression promoted deletion of a DNA fragment lying between two directly oriented specific recognition/crossing over sequences (six sites) located as an extrachromosomal DNA substrate. The same result was obtained in a recombination-dependent lacZ activation system tested in a cell line that stably expresses the beta-recombinase protein. In stable NIH/3T3 clones bearing different number of copies of the target sequences integrated at distinct chromosomal locations, transient beta-recombinase expression also promoted deletion of the intervening DNA, independently of the insertion position of the target sequences. The utility of this new recombination tool for the manipulation of eukaryotic genomes, used either alone or in combination with the other recombination systems currently in use, is discussed.  相似文献   

8.
A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.  相似文献   

9.
The prokaryotic beta-recombinase catalyzes site-specific recombination between two directly oriented minimal six sites in mammalian cells, both on episomic and chromatin-integrated substrates. Using a specific recombination activated gene expression system, we report the site-specific recombination activity of an enhanced green fluorescent protein (EGFP) fused version of beta-recombinase (beta-EGFP). This allows expression of active beta-recombinase detectable in vivo and in fixed cells by fluorescence microscopy. In addition, cellular viability is compatible with a substantial level of expression of the beta-EGFP protein. Using fluorescence-activated cell sorting, we have been able to enrich cell populations expressing this fusion protein. Application of this strategy has allowed us to study in more depth the host factor requirements for this system. Previous work showed that eukaryotic HMG1 protein was necessary and sufficient to help beta-recombinase activity in vitro. The influence of ectopic expression of HMG1 protein in the recombination process has been analyzed, indicating that HMG1 overexpression does not lead to a significant increase on the efficiency of beta-recombinase-mediated recombination both on episomal substrates and chromatin-associated targets. In addition, beta-recombinase-mediated recombination has been demonstrated in HMG1 deficient cells at the same levels as in wild type cells. These data demonstrate the existence of cellular factors different from HMG-1 that can act as helpers for beta-recombinase activity in the eukaryotic environment.  相似文献   

10.
将分别编码猪瘟病毒T细胞表位E290多肽和猪细小病毒主要保护性抗原VP2蛋白的重组基因插入干酪乳杆菌分泌型表达载体pPG中,构建了重组表达载体pPG-VP2-E290,将其电转化干酪乳杆菌Lactobacillus casei 393,获得了猪瘟病毒T细胞表位E290多肽与猪细小病毒VP2蛋白的乳酸菌共表达系统,经2%乳糖在MRS培养基中的诱导表达,对诱导表达的菌体及培养上清液进行SDS-PAGE检测表明,有约70kDa蛋白得到了表达,表达蛋白的大小与理论值相符。Western blot分析结果表明所表达的蛋白具有与天然病毒蛋白一样的抗原特异性。以诱导表达上清液作为抗原进行的间接ELISA实验也表明,重组的目的蛋白获得了分泌表达。将该重组干酪乳杆菌经口服接种途径免疫BALB/c小鼠,收集粪便样品检测小鼠产生抗PPV的特异性sIgA抗体,采集血液样本检测血清中抗PPV及抗E290的特异性IgG。结果表明分泌型的重组菌pPG-VP2-E290/L.casei 393免疫小鼠能够产生明显的抗体水平,为重组猪瘟与猪细小病毒乳酸菌口服活菌疫苗的研制奠定了重要的物质基础。  相似文献   

11.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

12.
Ribotyping ofLactobacillus casei group strains isolated from dairy products   总被引:1,自引:0,他引:1  
A series of lactobacilli isolated from dairy products were characterized using biotyping and ribotyping with EcoRI and HindIII restriction enzymes. Biotyping assigned 14 strains as Lactobacillus casei, 6 strains as Lactobacillus paracasei subsp. paracasei and 12 as Lactobacillus rhamnosus. The obtained ribotype patterns separated all analyzed strains into two clearly distinguished groups corresponding to L. rhamnosus and L. casei/L. paracasei subsp. paracasei. The HindIII ribotypes of individual strains representing these two groups were visually very similar. In contrast, EcoRI ribotyping revealed high intraspecies variability. All ribotypes of L. casei and L. paracasei subsp. paracasei dairy strains were very close and some strains even shared identical ribotype profiles. The type strains L. casei CCM 7088T (= ATCC 393T) and Lactobacillus zeae CCM 7069T revealing similar ribopatterns formed a separate subcluster using both restriction enzymes. In contrast, the ribotype profile of L. casei CCM 7089 (= ATCC 334) was very close to ribopatterns obtained from the dairy strains. These results support synonymy of L. casei and L. paracasei species revealed by other studies as well as reclassification of the type strain L. casei CCM 7088T as L. zeae and designation of L. casei CCM 7089 as the neotype strain.  相似文献   

13.
Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction.  相似文献   

14.
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.  相似文献   

15.
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.  相似文献   

16.
The plasmid pCI6, carrying the attP site of the temperate phage phiU, integrates into the attB site on the chromosome of Rhizobium leguminosarum biovar trifolii strain 4S. The 4 kb EcoRI-HindIII region of pCI6 involved in site-specific integration was subcloned as the attP fragment of phage phiU and sequenced. The attL fragment, one of the new DNA junctions generated from the insertion of pCI6 into the chromosome of the host Rhizobium, was used as a hybridization probe for isolation of the attB fragment of strain 4S. The nucleotide sequence of the 2 kb PstI fragment of strain 4S, which hybridized with the attL fragment, was decided and compared with that of the attP fragment. A 53 bp common sequence was expected to be the core sequence of site-specific integration between phage phiU and strain 4S. One of the ORFs on the attP fragment, which was located adjacent to the core sequence, had structural homology to the integrase family. However, the attB fragment showed high homology with the tRNA genes of Agrobacterium tumefaciens and E. coli. A 47 bp sequence of the 53 bp core sequence overlapped with this tRNA-like sequence. This indicates that the target site of phage phiU integration is the putative tRNA gene on the chromosome of the Rhizobium host.  相似文献   

17.
The site-specific recombination system used by the Streptomyces bacteriophage phiC31 was tested in the fission yeast Schizosaccharomyces pombe. A target strain with the phage attachment site attP inserted at the leu1 locus was co-transformed with one plasmid containing the bacterial attachment site attB linked to a ura4+ marker, and a second plasmid expressing the phiC31 integrase gene. High-efficiency transformation to the Ura+ phenotype occurred when the integrase gene was expressed. Southern analysis revealed that the attB-ura4+ plasmid integrated into the chromosomal attP site. Sequence analysis showed that the attBxattP recombination was precise. In another approach, DNA with a ura4+ marker flanked by two attB sites in direct orientation was used to transform S. pombe cells bearing an attP duplication. The phiC31 integrase catalyzed two reciprocal cross-overs, resulting in a precise gene replacement. The site-specific insertions are stable, as no excision (the reverse reaction) was observed on maintenance of the integrase gene in the integrant lines. The irreversibility of the phiC31 site-specific recombination system sets it apart from other systems currently used in eukaryotic cells, which reverse readily. Deployment of the phiC31 recombination provides new opportunities for directing transgene and chromosome rearrangements in eukaryotic systems.  相似文献   

18.
将分别编码猪细小病毒(PPV)主要免疫保护性抗原VP2蛋白与大肠杆菌不耐热肠毒素B亚单位(LTB)基因插入乳酸杆菌细胞表面表达载体pPG中, 成功构建了重组表达载体pPG-VP2-LTB, 将其电转化干酪乳杆菌Lactobacillus casei 393, 获得了表达猪细小病毒VP2-LTB融合蛋白的重组乳酸菌表达系统, 经2%乳糖诱导, SDS-PAGE和Western-blot检测表明, 有大小约78 kD的蛋白得到了表达, 具有与天然病毒蛋白一样的抗原特异性, 全细胞ELISA结果表明, LTB同  相似文献   

19.
Summary The physical maps of the LP51 and LP52 prophages in lysogenic strains of Bacillus licheniformis were constructed on the basis of data obtained by hybridization of phage DNA probes with Southern blots of restricted DNA of the lysogens. The data were compatible with the Campbell model for chromosomal integration; the attP site was mapped at 58.7–61.8 map units of the genomes of both phages. Identification of prophage-host DNA junction fragments indicated the presence of a unique attB site on the bacterial chromosome; the set of junction fragments in the strain B. licheniformis ATCC 10716 was identical to that of ATCC 11946, but different from ATCC 8187. Both the LP51 and LP52 phages used the same integration sites. Upon reinfection with either phage, the cured strains UM12 and UM18 (i.e. 10716 and 11946 cured of LP52 or LP51, respectively) turned out to be integration deficient. In surface cultures the reinfected bacteria could be maintained in the lysogenic state without, however, integrating the phage genome; when these bacteria were passaged in submerged cultures, several modes of anomalous integration were observed, and the phage segregated into a variety of forms, discernible by virulence and plaque morphology. In liquid cultures of UM12(LP51) or UM12(LP52) lytic forms finally predominated, while most lysogenized UM18 were converted into defective lysogens which contained a defective prophage in a stably integrated form.  相似文献   

20.
Bacteriophages of lactobacilli   总被引:13,自引:0,他引:13  
Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by mitomycin C. Phages so far studied of the latter 2 and closely related lactobacilli, either temperate or isolated as lytic, may be divided into 4 unrelated groups called a, b, c and d. Most of these phages are found in group a and an unquestionable relationship has already been shown between lytic phages and temperate phages that belong to this group. Lytic phage LL-H of L. lactis LL 23, isolated in Finland, is one of the most representative of those of group a and has been extensively studied on the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号