首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
A 2‐year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin‐Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein‐marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season‐long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control.  相似文献   

2.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

3.
Chang GC  Eigenbrode SD 《Oecologia》2004,139(1):123-130
Plant traits can affect ecological interactions between plants, herbivores, and predators. Our study tests whether reduced leaf wax in peas alters the interaction between the pea aphid ( Acyrthosiphon pisum), a foliar-foraging predator (a lady beetle, Hippodamia convergens) and a ground-foraging predator (a ground beetle, Poecilus scitulus). We performed a 2×2×2 factorial experiment in which wax level, presence of H. convergens, and presence of P. scitulus were manipulated. Experimental arenas consisted of a cage surrounding three pea plants. One plant in each cage was stocked with 15 pea aphids. In greenhouse and field cage experiments, we assessed the effect of each factor and their interactions on aphid density. As in previous studies, H. convergens foraged for aphids more effectively on reduced wax peas than on normal peas. Other interactions among H. convergens, P. scitulus , and A. pisum were the same on both types of peas. We consider how aphid movement, plant growth, and a high frequency of predation by P. scitulus on H. convergens influenced pea aphid density.  相似文献   

4.
Introduced species have been linked to declines of native species through mechanisms including intraguild predation and exploitative competition. However, coexistence among species may be promoted by niche partitioning if native species can use resources that the invasive species cannot. Previous research has shown that some strains of the aphid Aphis craccivora are toxic to a competitively dominant invasive lady beetle, Harmonia axyridis. Our objective was to investigate whether these aphids might be an exploitable resource for other, subdominant, lady beetle species. We compared larval development rate, survival, and adult weight of five lady beetle species in no‐choice experiments with two different strains of A. craccivora, one of which is toxic to H. axyridis and one that is nontoxic. Two lady beetle species, Cycloneda munda and Coleomegilla maculata, were able to complete larval development when feeding on the aphid strain that is toxic to H. axyridis, experiencing only slight developmental delays relative to beetles feeding on the other aphid strain. One species, Coccinella septempunctata, also was able to complete larval development, but experienced a slight reduction in adult weight. The other two lady beetle species, Hippodamia convergens and Anatis labiculata, demonstrated generally low survivorship when consuming A. craccivora, regardless of aphid strain. All five species showed increased survival and/or development relative to H. axyridis on the “toxic” aphid strain. Our results suggest that this toxic trait may act as a narrow‐spectrum defense for the aphids, providing protection against only some lady beetle enemies. For other less‐susceptible lady beetles, these aphids have the potential to provide competitive release from the otherwise dominant H. axyridis.  相似文献   

5.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

6.
Populations of cotton aphid on Hibiscus syriacus increased rapidly from 17 to 24 May 2007, and then decreased as its predator, the lady beetle Hamonia axyridis, increased in number. There was a 10 day time lag between peak populations of aphids and lady beetles. The infestation of aphids on H. syriacus produced some damage, but H. syriacus recovered soon after the lady beetles arrived. Cotton aphid clones from H. syriacus were transferred to other summer host plants: to five different vegetables on two dates, and to cucumber on three dates. Apart from one case where reproduction occurred on eggplant, most H. syriacus aphid clones did not survive on the vegetables. The cotton aphid on H. syriancus was prey and a food source for H. axyridis and acted to conserve natural enemies.  相似文献   

7.
In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.  相似文献   

8.
Scavenging activity of predators inhabiting agroecosystems has not been thoroughly investigated. Understanding the prevalence of necrophagy in predators is paramount to determining the effectiveness of biological control agents. A molecular predator gut content assay is described that can differentiate necrophagy from viviphagy. Cadaver sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and green lacewing, Chrysoperla rufilabris Burmeister (Neuroptera: Chrysopidae) serving as targeted prey items were marked with rabbit immunoglobulin G (IgG) protein and live prey items were marked with chicken IgG, respectively. The marked prey items were fed to convergent lady beetles, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) and soft-winged flower beetles, Collops vittatus (Say) (Coleoptera: Melyridae). The frequency of detection of the protein-marked prey items in the gut of the predaceous beetles was assessed at 0, 3, 6, 12, 24 and 48 h after feeding using a rabbit-IgG-specific or chicken-IgG-specific enzyme-linked immunosorbent assay (ELISA). Each IgG-specific ELISA detected the presence of the marker proteins in the gut of 90 % of the predators up to 12 h after prey consumption. A laboratory feeding study was also conducted to determine the propensity that each predator species engages in viviphagy and necrophagy. The laboratory feeding observations revealed that C. vittatus prefer carrion prey items. Finally, the laboratory observations of necrophagy were confirmed in a field study where C. vittatus was observed, directly and indirectly, feeding on H. convergens carcasses. The methodologies described here are useful for future studies on various aspects of insect predation.  相似文献   

9.
Biological control of economically important crop pests is an important component of integrated pest management (IPM) strategies. Predator–prey energy relationships are critical to the success of biocontrol strategies; however, these relationships are often ignored in many IPM programs. In this study, the biocontrol potential of cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), by the ladybeetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) was estimated in terms of energy budgets calculated at 27 ± 1 °C. The energy equivalent of prey subjects (aphids) consumed was estimated from bomb calorimetry and partitioned into the energy associated with ingestion, assimilation, respiration, reproduction, and waste for each developmental stage of the lady beetle. The average assimilation efficiencies for larval and adult ladybeetles were 88.2 and 91.1%, respectively, whereas net ecological efficiencies were 17.6% for larvae and 2.6% for adults. Similarly, assimilation efficiencies of cotton aphids were 71.5 and 74.4% for nymphs and adults, respectively. Based on energy budget calculations, approximately 520, 3‐day‐old aphids and 5 356, 3‐day‐old aphids were estimated to be consumed by the ladybeetle larval stage and the female adult stage, respectively. These estimates were similar to the actual number of aphids consumed by the ladybeetles, based on actual counts. The current data demonstrate that P. japonica is an important natural enemy of the cotton aphid, and that predator–prey energy relationships can play a critical role in biocontrol strategies and IPM programs.  相似文献   

10.
Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation.  相似文献   

11.
Takizawa T  Snyder WE 《Oecologia》2011,166(3):723-730
When predator biodiversity strengthens herbivore suppression, the pattern generally is attributed to interspecific complementarity. However, the relaxation of intraspecific interference within diverse communities has received less attention as an underlying factor, and most experiments to date span much less than one predator generation. Here, working with a community of aphid predators, we compared the survivorship of juvenile predators embedded within diverse versus single-species communities of adult predators. We found that greater predator diversity improved juvenile survivorship for three of four predator taxa (the lady beetles Hippodamia convergens and Coccinella septempunctata, and the bug Nabis alternatus; but not the small bug Geocoris bullatus), whereas survivorship was relatively low when juveniles foraged among only conspecific adults. When aphid densities differed they were lowest for the diverse treatment, and so resource availability could not explain differences in juvenile survivorship. Instead, feeding trials indicated that cannibalism generally posed a greater risk to juveniles than did intraguild predation (with Geocoris again the exception). Our results suggest that the dilution of intraspecific interference may play an important, and perhaps underappreciated, role in shaping predator diversity effects. Furthermore, relatively strong cannibalism but weak intraguild predation has the potential to project diversity effects forward into subsequent generations.  相似文献   

12.
Aphids increase production of winged individuals as a generalized response to multiple threats, including predators, competitors, and poor host plant quality. While wing formation in response to these individual threats is well documented, few investigations have evaluated whether combined threats lead to additive or non-additive outcomes. We tested the interactive effects of predation risk and plant quality on population growth and wing induction in the potato aphid, Macrosiphum euphorbiae. Plant quality was varied using phytohormonal manipulations of tomato (Solanum lycopersicum) to elevate or suppress the jasmonate and salicylate defense pathways. Predation risk was altered by exposing aphids to lethal or risk (unable to feed) individuals of the convergent lady beetle, Hippodamia convergens. Phytohormonal treatments resulted in >4-fold variation in aphid population growth and thus strongly affected plant quality; however, the percentage of winged individuals was no different across plant types. Predators similarly reduced aphid abundance, but also elicited a ~3-fold increase in wing formation, an effect that was similar in magnitude when comparing lethal with risk predators. The overall impact of plants and predators on aphids was largely additive, an outcome that was unexpected given the likelihood for interactions between these two factors and our prior results with other herbivores in this system. We discuss this discrepancy in the context of phenotypic plasticity, non-lethal predator effects, and the ecological challenges faced by wing dimorphic insects.  相似文献   

13.
The role of vision and color in close-proximity foraging behavior was investigated for four species of lady beetles: Coccinella septempunctata, Hippodamia convergens, Harmonia axyridis, and Coleomegilla maculata. The effect of light level and color cues on consumption rates varied among the four predator species. The consumption rates of these predators on the pea aphid Acyrthosiphon pisum (Harris) was measured under light and dark conditions. C. septempunctata,H. convergens, and Ha. axyridis consumed significantly more aphids in the light than in the dark, while the consumption rate of Col. maculata was not affected by light level. Foraging ability was also measured on red and green color morphs of the pea aphid on red, green, and white backgrounds. C. septempunctata consumed significantly more of the aphid morph that contrasted with the background color, and showed no difference between morphs on the white background. H. axyridis consumed significantly more red morph aphids regardless of background. The remaining two species showed no difference in consumption rates on the two color morphs. The variation in the use of visual cues demonstrates how different species of predators can exhibit different foraging behaviors when searching for the same prey. Received: 4 August 1997 / Accepted: 3 February 1998  相似文献   

14.
Non-trophic interactions, driven by one species changing the behavior but not density of another species, appear to be as pervasive as those involving consumption. However, ecologists have only begun to explore non-trophic interactions in species-rich communities. We investigated interactions within a community including two predator–prey linkages separated in space: ground-active predatory beetles and their fly egg prey on the ground, and lady beetles and their aphid prey in plant foliage. In field and greenhouse experiments we found that ground-active predators preyed heavily on fly eggs except when both aphids and lady beetles were present. The aphids drop from the foliage to escape foraging lady beetles, and once on the ground apparently triggered ground-active predators to switch from attacking fly eggs to attacking aphids. This suggests that the first non-trophic interaction in the foliage, mediated by aphid antipredator behavior, in turn initiated and accentuated a second non-trophic interaction on the ground, mediated by prey-switching behavior by ground predators. Our results demonstrate that successive non-trophic interactions can be propagated along chains of more than three species, and can serve to link species that are otherwise spatially isolated.  相似文献   

15.
Sentinel prey (an artificially manipulated patch of prey) are widely used to assess the level of predation provided by natural enemies in agricultural systems. Whilst a number of different methodologies are currently in use, little is known about how arthropod predators respond to artificially manipulated sentinel prey in comparison with predation on free‐living prey populations. We assessed how attack rates on immobilized (aphids stuck to cards) and artificial (plasticine lepidopteran larvae mimics) sentinel prey differed to predation on free‐moving live prey (aphids). Predation was assessed in response to density of the common invertebrate predators, a foliar‐active ladybird Harmonia axyridis (Coleoptera: Coccinellidae), and a ground‐active beetle Pterostichus madidus (Coleoptera: Carabidae). Significant increases in attack rates were found for the immobilized and artificial prey between the low and high predator density treatments. However, an increased predator density did not significantly reduce numbers of free‐living live aphids included in the mesocosms in addition to the alternate prey. We also found no signs of predation on the artificial prey by the predator H. axyridis. These findings suggest that if our assessment of predation had been based solely on the foliar artificial prey, then no increase in predation would have been found in response to increased predator density. Our results demonstrate that predators differentially respond to sentinel prey items which could affect the level of predation recorded where target pest species are not being used.  相似文献   

16.
Abstract.  1. Habitat management to enhance natural enemy populations in agricultural systems may help regulate levels of crop pests, but little research addresses the behaviour of immigrating beneficial insects.
2. Stable carbon isotopes were used in complementary laboratory and field studies to examine colonisation behaviour of an ephemeral agricultural habitat by the lady beetle, Hippodamia convergens Guérin-Méneville.
3. Under laboratory conditions, H. convergens carbon isotope ratios, δ13C, changed after its food supply was shifted from a C4- to a C3-based diet of aphids produced on grain sorghum or cotton respectively. Final isotope ratios of adult H. convergens were closer to that of the new C3-based diet, with most change in δ13C occurring within 3 days after the diet shift.
4. The carbon isotope ratios of lady beetle adults collected in cotton fields suggested that grain sorghum was a continuous source for H. convergens until many nearby sorghum fields matured and senesced.
5. When cotton aphid ( Aphis gossypii Glover) prey were absent, carbon isotope ratios of beetle populations did not change over time and virtually no egg production by H. convergens was detected. This indicates that beetles were feeding little on non-aphid resources originating in cotton.
6. With cotton aphids present, beetle isotope ratios decreased towards the carbon isotope ratio of cotton, indicating adult feeding in cotton. As a result, egg masses produced had carbon isotope ratios in the C3 range of values.
7. The results suggest that some predator species may be retained in habitats without large prey populations, a quality essential in controlling pests in agricultural systems.  相似文献   

17.
Dissemination of microbial biocontrol agents via predators may have advantages for safe spore dispersal to targeted pests with the added benefit of predation. A laboratory study was conducted to test the target-oriented dissemination of conidia of Beauveria bassiana using larvae of both the multicoloured Asian lady beetle (Harmonia axyridis) and common green lacewing (Chrysoperla carnea) for control of aphids. Maximum dry conidial attachment occurred within approximately 7 min after exposure. After release of the treated predators on leaves of Chinese cabbage, within 12 hours lacewing larvae dispersed 89% of the attached conidia while Asian lady beetles dispersed 93%. Both predators dispersed conidia up to 2.4 m from the release site. Leaf disk bioassays were conducted to compare two application methods; the dissemination of conidia of B. bassiana by predators and the direct application of conidial suspensions. Mortality in sprayed aphids was 91±2.1% compared to 88±2.1 and 84±4.2%, respectively, when conidia were disseminated by lacewings and lady beetles. Predation was not affected in treated lacewing larvae whereas there was a 20% reduction in predation by lady beetle larvae. It appears that B. bassiana can be effectively delivered using certain insect predators.  相似文献   

18.
The influence of prey choice on the predation of a target prey item by a polyphagous insect predator was investigated in field plot studies. The target prey consisted of eggs of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and the predator was the 12‐spotted ladybeetle, Coleomegilla maculata Lengi (Coleoptera: Coccinellidae). Eggs of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae), and nymphs and adults of the green peach aphid, Myzus persicae Sulzer (Homoptera: Aphididae), comprised the alternative prey choices. The objectives of these studies were to: (1) examine predation in a multiprey scenario likely to occur in an agroecosystem, and (2) use the data to simulate the impact of predator‐induced mortality on the evolution of resistance to Bt‐transgenic plants in the target herbivore. Simulations of the rate of resistance evolution were carried out using a deterministic genetic model. Experiments were performed using potato field plots planted in a manner reflecting a 25% or 50% non‐transgenic refuge. CPB eggs were infested so as to mimic the densities of resistant and susceptible populations that might occur in commercial Bt‐transgenic plantings. Densities of predators and alternate prey species were chosen to represent those that might typically occur in potato crops in the eastern USA. Simulation results indicated that when ECB eggs were present, predation on CPB eggs either became inversely spatially density‐dependent, or increased significantly in a density‐dependent manner. When aphids were present, predation became positively density‐dependent. Model simulations predicted that ECB egg presence is beneficial, in that resistance was delayed by up to 40 pest generations (as compared to the scenario with CPB as the only prey), while aphid presence accelerated resistance evolution by 18 generations. Results suggest that resistance management strategies should take into account the composition of prey species available to generalist predators typically present, so as to best delay pest adaptation to Bt‐toxins.  相似文献   

19.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

20.
龟纹瓢虫对棉蚜的捕食行为   总被引:18,自引:1,他引:17  
戈峰  丁岩钦 《昆虫学报》1995,38(4):436-441
为探讨天敌对害虫的捕食作用机制,充分发挥生物防治的作用,本文从捕食能学角度,系统地观测了龟纹瓢虫Propylea japonica (Thunberg)对棉蚜Aphis gossypii Glover的捕食行为及影响的因素。结果表明:龟纹瓢虫对棉蚜的捕食行为依棉蚜的密度变化而逐渐转变;它在棉蚜密度高时,搜索活动下降;而在棉蚜密度低时,则搜索活动增加。产生这种行为是由于肠胃量与棉蚜遭遇率变化的综合作用结果。因此,将瓢蚜比调控在一定水平上,可以更有效地发挥以瓢治蚜的生物防治作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号