首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamarixia radiata Waterston (Hymenoptera: Eulophidae) is an effective idiobiont ectoparasitoid of the psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vector of the huanglongbing (HLB). We examined the olfactory responses of T. radiata to volatiles emanating from D. citri or plant volatiles using a custom designed T-maze olfactometer and open arena bioassays. We also examined the behavioral response of male and female T. radiata to conspecifics of the opposite sex to determine whether olfactory signals mediate mate location. T. radiata adults exhibited a sexually dimorphic response to volatiles emanating from D. citri and citrus. Female T. radiata responded positively to the odors emanating from D. citri nymphs in both olfactometer and open arena bioassays. However, female wasps showed no response to odors emanating from D. citri adults, D. citri honey dew secretions, intact citrus or orange jasmine leaves. Odors emanating from D. citri damaged citrus were not attractive to T. radiata females but stimulated attraction of wasps to D. citri on damaged plants. T. radiata females were not attracted to D. citri immatures when they were presented as visual cues. Male T. radiata did not show attraction to D. citri nymphs or other putative odors that were attractive to female T. radiata. In olfactometer bioassays, more male T. radiata responded to the odor of female conspecifics than blank controls in the absence of associated citrus host plant volatiles. Odors emanating from female T. radiata were not attractive to male T. radiata. Male or female T. radiata were not attracted to the odors emanating from same sex conspecifics. Both male and female T. radiata adults showed positive phototactic behavior. Collectively, our results provide behavioral evidence that: 1) female T. radiata use volatiles emanating from D. citri nymphs to locate its host and: 2) female T. radiata release a volatile pheromone that attracts male conspecifics.  相似文献   

2.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an important invasive citrus pest in the USA because it vectors a bacterium responsible for huanglongbing, a devastating disease of citrus. Information was lacking on seasonal aspects of flight activity by D. citri, which could have ramifications on psyllid management as well as our understanding of epidemiology of the disease. Of interest from a pest management standpoint would be whether D. citri regularly disperses to or away from citrus on a predictable schedule. In research presented here, seasonal flight activity by D. citri was investigated using yellow sticky traps deployed in citrus trees and in fallow areas adjacent to citrus. Results indicated that flight activity by both male and female D. citri away from citrus can occur at any time of the year with consistent dispersal activity during the spring. The research further indicated citrus is continually subject to infestation by immigrating adults and that there is no time during the year that a citrus grower could be assured immigration would not occur. Growers should be aware that adult dispersal occurs regularly during spring and they should time management tactics accordingly. Adult flight activity 2 m from a citrus tree was more pronounced at 1 m above ground than at 2 or 3 m high. At distances of 8–60 m from trees, numbers of adults on traps were similar among the three heights. Males and females were similar with respect to seasonal flight activity. Numbers of adults captured on traps distant from citrus were not correlated with wind speed, sunlight, or air temperature, but there was some evidence that relative humidity influenced flight activity. Although the D. citri life cycle is dependent on flush, data from these studies did not confirm that psyllid dispersal from citrus consistently increases as citrus flush abundance decreases.  相似文献   

3.
The Asian citrus psyllid (AsCP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus associated with the citrus disease huanglongbing (HLB). Commonly referred to as citrus greening disease in the USA, HLB causes reduced fruit yields, quality, and ultimately tree death and is considered the most serious citrus disease. HLB has become a major limiting factor to the production of citrus worldwide. Studies of HLB have been impeded by the fact that C. Liberibacter has not yet been cultured on artificial nutrient media. After being acquired by a psyllid, C. Liberibacter asiaticus is reported to replicate within the psyllid and is retained by the psyllid throughout its life span. We therefore hypothesized that C. Liberibacter asiaticus could be cultured in vitro using psyllid cell cultures as the medium and investigated the establishment of a pure culture for AsCP cells. Several commercially available insect cell culture media along with some media we developed were screened for viability to culture cells from AsCP embryos. Cells from psyllid tissues adhered to the plate and migration was observed within 24 h. Cells were maintained at 20°C. We successfully established primary psyllid cell cultures, referred to as DcHH-1, for D. citri Hert-Hunter-1, with a new media, Hert-Hunter-70.  相似文献   

4.
Citrus greening (Huanglongbing, HLB) is a destructive disease associated with the uncultivable, phloem-limited, gram-negative bacteria Candidatus Liberibacter spp., which affects citrus crops and other Rutaceae species. HLB is rapidly transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). We developed an artificial medium on which D. citri eggs can hatch and first-instar nymphs can feed. The medium could be used to study insect physiology and screen molecules that may interfere with egg hatching and nymph development.  相似文献   

5.
We investigated how chemical cues derived from female Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) and their host plants affect host acceptance choices by conspecifics. In four-choice cage and two-choice olfactometer assays, female psyllids avoided conspecific female cues in a density-dependent manner. However, odors from citrus plants actively damaged by psyllid feeding were attractive to conspecific females. When odors from feeding-damaged plants were presented simultaneously with odors from female D. citri, attraction of female conspecifics was no longer observed as compared with a clean air control in olfactometer assays. In subsequent experiments, D. citri females were released within arenas that contained actively feeding-damaged or non-damaged (control) citrus plants, each with previously psyllid-infested and uninfested young leaves. D. citri development is linked to the presence of these newly emerging leaves which is the only site of nymphal development. Female D. citri were initially attracted by the actively damaged plants as compared with non-damaged controls. After acceptance of plants that were actively damaged by feeding, D. citri females preferentially chose and settled on uninfested young leaves as compared with previously infested young leaves. A herbivore-induced plant volatile attractant and a female-specific odor repellent appear to be complementary foraging cues providing psyllids with information at two spatial scales: (1) the whole plant level for choosing a plant potentially harboring male conspecifics for mating, and (2) the within plant level to reduce intra-conspecific competition by identifying previously exploited resources.  相似文献   

6.
The Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), is an invasive pest of citrus in the United States. The psyllid feeds and reproduces primarily on new flush growth of citrus and other rutaceous plants. Because it vectors the bacterial causal agents of the deadly citrus greening disease, D. citri is potentially a pest of economic importance in all citrus growing areas where it occurs together with the disease. We investigated the diurnal patterns of its flight activity in the field and the effects of light on its host selection and egg laying behaviors. The numbers of adult psyllids caught on yellow sticky traps were 3 to 4-fold higher during daytime than nighttime. Daytime flight activity of D. citri adults also varied with time of the day with peak catches occurring at midday from 1200 to 1500 h. Illumination of the traps at night increased their attractiveness to adult psyllids by 5-fold. Similarly, light significantly increased plant colonization by adults and female egg deposition on potted plants in the laboratory. These results showed that the flight activity and host selection behavior of adult psyllids are regulated by light and circadian rhythms. Thus, adult psyllids utilize light as visual cues in their host-plant selection process.  相似文献   

7.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major citrus pest that transmits the bacteria Candidatus Liberibacter asiaticus and Ca. L. americanus associated with huanglongbing (HLB) disease. Diaphorina citri population densities can affect the effectiveness of its monitoring and sampling methods. Thus, we compared different methods for adult D. citri monitoring in groves with and without insecticide application programmes. Four short‐term experiments were carried out, each one lasting four consecutive weeks. In these experiments, sticky cards with different colours (yellow, light green, green and dark green), sweep net, two suction device models, visual inspection and stem tap sampling were assessed. Two long‐term experiments were conducted for 4.5 and 5 years, in which only yellow sticky card and visual inspection for D. citri monitoring were assessed. For the short‐term experiments, psyllids were detected by all monitoring methods during all sampling periods in areas without chemical control. However, in areas with psyllid control via fortnightly and monthly applications of insecticides, only sticky cards, regardless of their colour, were able to detect the presence of D. citri. Similarly, for the long‐term experiments, yellow sticky cards were more effective than visual inspection for detecting and quantifying D. citri in all areas with or without insecticide application. Therefore, in areas where HLB is present and chemical control of psyllid is required, sticky cards are the most reliable option for monitoring D. citri.  相似文献   

8.
We investigated feeding and oviposition behavior of the Asian citrus psyllid, Diaphorina citri, when exposed to the foraging trails of the convergens ladybird beetle, Hippodamia convergens. Diaphorina citri females feeding on citrus leaves directly exposed to the ladybird adults or treated with trail extract excreted significantly less honeydew droplets than controls. The trail chemicals of the ladybird beetle also decreased oviposition by D. citri females on citrus. In a no-choice experiment, D. citri females preferred to oviposit on control flush and plants than those with ladybird trail-extract treatments. In two-choice experiments, 68.0% of D. citri released into cages exhibited strong selection preference for settling and eventual oviposition on control plants than plants treated with ladybird trail extract. Diaphorina citri eggs were found on all new leaf flush of control plants, whereas only 29.5% of flush on treatment plants were selected for oviposition. The trail chemical deposited by the convergens ladybird beetle elicits repellency of D. citri feeding and oviposition. Therefore, the trail chemicals my contain components that could be useful for behavior-based management of D. citri and HLB disease by reducing psyllid feeding and oviposition.  相似文献   

9.
The Asian citrus psyllid, Diaphorina citri Kuwayama, vectors the causal pathogen of huanglongbing (HLB), which is likely the most important disease affecting worldwide citrus production. Interplanting citrus with guava, Psidium guajava L., was reported to reduce D. citri populations and incidence of HLB. We describe a series of investigations on the response of D. citri to citrus volatiles with and without guava leaf volatiles and to synthetic dimethyl disulphide (DMDS), in laboratory olfactometers and in the field. Volatiles from guava leaves significantly inhibited attraction of D. citri to normally attractive host‐plant (citrus) volatiles. A similar level of inhibition was recorded when synthetic DMDS was co‐released with volatiles from citrus leaves. In addition, the volatile mixture emanating from a combination of intact citrus and intact guava leaves induced a knock‐down effect on adult D. citri. Compounds similar to DMDS including dipropyl disulphide, ethyl‐1‐propyl disulphide, and diethyl disulphide did not affect the behavioural response of D. citri to attractive citrus host plant volatiles. Head‐space volatile analyses were conducted to compare sulphur volatile profiles of citrus and guava, used in our behavioural assays, with a gas chromatography‐pulsed flame photometric detector. DMDS, produced by wounded guava in our olfactometer assays, was not produced by similarly wounded citrus. The airborne concentration of DMDS that induced the behavioural effect in the 4‐choice olfactometer was 107 pg/ml. In a small plot field experiment, populations of D. citri were significantly reduced by deployment of synthetic DMDS from polyethylene vials compared with untreated control plots. Our results verify that guava leaf volatiles inhibit the response of D. citri to citrus host plant volatiles and suggest that the induced compound, DMDS, may be partially responsible for this effect. Also, we show that field deployment of DMDS reduces densities of D. citri and thus may have potential as a novel control strategy.  相似文献   

10.
Huanglongbing (HLB), also known as citrus greening, is currently the most destructive disease of citrus, responsible for huge economic losses in the world's major citrus production areas. The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits ‘Candidatus Liberibacter asiaticus’ (Clas), the pathogen responsible to cause HLB. Understanding of vector, pathogen, and host plant interactions is important for the management of this vector‐disease complex. We used the direct‐current electrical penetration graph (DC‐EPG) system to evaluate feeding behavior of Clas‐infected D. citri adults, and their potential to transmit the pathogen to healthy citrus, Citrus reticulata Blanco cv. Sunki (Rutaceae), following a 24‐h inoculation access period. Plants were tested for the presence of Clas by qPCR 6 months after inoculation. Findings suggest that inoculation was associated with salivation into the phloem sieve elements (waveform E1). The minimum feeding time for successful transmission by a single adult was 88.8 min, with a minimum E1 duration of 5.1 min. Regression analysis indicated a significant relationship between E1 duration and transmission efficiency. The adults successful in transmitting Clas to healthy citrus were able to penetrate and feed in the phloem much earlier than those which did not transmit. The minimum duration of E1 for a female was shorter than that of a male, but transmission was higher. However, durations of other EPG parameters were not significantly different between male and female. Feeding by single Clas‐infected D. citri adults on 6‐month‐old plants (Sunki) resulted in 23% HLB‐positive plants 6 months after inoculation. Multiple nymphs or adults could transmit the pathogen more efficiently than individual adults in the field, and further enhance the severity of the disease. Effective tactics are warranted to control D. citri and disrupt transmission of Clas.  相似文献   

11.
Bacillus thuringiensis (Bt) toxins are effective in controlling insect pests either through the spraying of products or when expressed in transgenic crops. The discovery of endophytic Bt strains opened new perspectives for studies aimed at the control of sap‐sucking insects, such as the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of “Candidatus Liberibacter spp.,” associated with citrus huanglongbing (HLB). In this study, translocation of endophytic Bt strains in citrus seedlings inoculated with Bt suspension delivered by soil‐drench, and their systemic pathogenicity to D. citri nymphs were investigated. The pathogenicity of three wild‐type Bt strains against D. citri third‐instar nymphs was demonstrated. Among the 10 recombinant strains tested (each of them harboring a single cry or cyt gene), 3 can be highlighted, causing 42%–77% and 66%–90% nymphal mortality at 2 and 5 d after inoculation, respectively. The isolation of Bt cells from young citrus shoots and dead nymphs, and PCR performed with specific primers, confirmed the involvement of the Bt strains in the psyllid mortality. This is the first report showing the translocation of Bt strains from citrus seedling roots to shoots and their potential to control D. citri nymphs that fed on these soil‐drench inoculated seedlings. The Bt strains that caused the highest mortality rates have the potential to be used as bioinsecticides to control D. citri and the identified genes can be used for the production of transgenic Bt citrus.  相似文献   

12.
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas–vector interaction.  相似文献   

13.
1. The response of a phytopathogen vector to pathogen‐induced plant volatiles was investigated, as well as the response of the phytopathogen vector's parasitoid to herbivore‐induced plant volatiles released from plants with and without drought stress. 2. These experiments were performed with Asian citrus psyllid (Diaphorina citri), vector of the plant pathogen Candidatus Liberibacter asiaticus (CLas) and its parasitoid Tamarixia radiata as models. Candidatus Liberibacter asiaticus is the presumed causal pathogen of huanglongbing (HLB), also called citrus greening disease. 3. Diaphorina citri vectors were attracted to headspace volatiles of CLas‐infected citrus plants at 95% of their water‐holding capacity (WHC); such attraction to infected plants was much lower under drought stress. Attraction of the vector to infected and non‐stressed plants was correlated with greater release of methyl salicylate (MeSA) as compared with uninfected and non‐stressed control citrus plants. Drought stress decreased MeSA release from CLas‐infected plants as compared with non‐stressed and infected plants. 4. Similarly, T. radiata was attracted to headspace volatiles released from D. citri‐infested citrus plants at 95% of their WHC. However, wasps did not show preference between headspace volatiles of psyllid‐infested and uninfested plants when they were at 35% WHC, suggesting that herbivore‐induced defences did not activate to recruit this natural enemy under drought stress. 5. Our results demonstrate that herbivore‐ and pathogen‐induced responses are environmentally dependent and do not occur systematically following damage. Drought stress affected both pathogen‐ and herbivore‐induced plant volatile release, resulting in concomitant decreases in behavioural response of both the pathogen's vector and the vector's primary parasitoid.  相似文献   

14.
15.
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is the principal vector of citrus greening (huanglongbing) disease. Invasion of new areas by the vector increases the risk of further spread of the disease and has economic impacts on the global citrus industry. Effective implementation of vector surveys is essential to contain disease outbreaks. This is especially true in countries such as Japan, where most of the major citrus‐producing areas are free from citrus greening. Recently, vector surveys have been routinely conducted to maintain ‘disease‐free’ and ‘disease‐ and vector‐free’ areas in Japan, and improvement of methods that can detect D. citri in native insect populations is imperative. Here, we developed a method of using conventional and real‐time PCR to detect D. citri among bulk insects captured in sticky traps without the need for preliminary differentiation steps based on morphology. DNA fragments of D. citri were specifically detected by both conventional and real‐time PCR in a mixture of a 10?3 dilution (ca. 0.008–0.009 ng/μl) of D. citriDNA and 100 ng/μl of bulk insect DNA, indicating that small body parts such as pieces of leg or parts of wings of D. citri were detectable in the bulk insect samples. No misleading amplification of fragments from the other psyllid species and citrus pests we used occurred under our PCR conditions. Our results suggest that the technique is applicable to extensive surveys of D. citri in early warning programmes.  相似文献   

16.
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is an insect vector that transmits the bacterial pathogen Candidatus Liberibacter asiaticus (CLas) associated with the destructive citrus disease, citrus huanglongbing (HLB). Currently, D. citri is the major target in HLB management, although insecticidal control and disruption of the D. citri–CLas interactions both face numerous challenges. The present study reports the subcellular proteomic profiles of D. citri, encompassing the three main subcellular protein fractions: cytosol, mitochondria and microsomes. After optimization, subcellular proteins of both high and low abundance are obtained by two‐dimensional gel electrophoresis (2‐DE). A total of 1170 spots are detected in the 2‐DE gels of the three subcellular fractions. One hundred and sixty‐four differentially expressed proteins are successfully identified using liquid chromatography‐dual mass spectroscopy. An efficient protocol for subcellular protein fractionation from D. citri is established and a clear protein separation is achieved with the chosen protein fractionation protocol. The identified cytosolic proteins are mainly metabolic enzymes, whereas a large portion of the identified proteins in the mitochondrial and microsomal fractions are involved in ATP biosynthesis and protein metabolism, respectively. Protein–protein interaction networks are predicted for some identified proteins known to be implicated in pathogen–vector interactions, such as actin, tubulin and ATP synthase, as well as insecticide resistance, such as the cytochrome P450 superfamily. The findings should provide useful information to help identify the mechanism responsible for the CLas–D. citri interactions and eventually contribute to D. citri control.  相似文献   

17.
[目的] 明确佛冈县不同类型橘园柑橘木虱的种群动态,为当地柑橘木虱及柑橘黄龙病的防治工作提供科学依据。[方法] 通过2015-2016年的系统调查,对广东省佛冈县砂糖橘园的柑橘木虱种群消长动态进行研究,对比分析了不同处理措施对柑橘木虱种群数量的影响。[结果] 1-3月柑橘木虱发生危害较轻,随着嫩梢增多,其种群数量开始上升,6-9月为种群发生高峰期,期间出现多个发生高峰,10月之后种群数量逐渐进入消退期,种群数量维持在较低水平;2015、2016年佛冈县柑橘木虱的季节性消长动态基本一致,但种群发生量存在明显差别;3种不同类型橘园内柑橘木虱种群发生数量也存在显著差异,常年失管橘园柑橘木虱种群发生数量最高,常规水肥管理橘园次之,二者均显著高于常规水肥管理及化学防治橘园。[结论] 化学防治可在一定程度上控制柑橘木虱的种群数量,及时清理失管橘园对控制柑橘木虱和柑橘黄龙病传播至关重要。  相似文献   

18.
The effects of five differently-colored sticky traps in capturing adult Diaphorina citri were evaluated in citrus orchards. Trap catches of D. citri were monitored fortnightly on blue, green, red, white and yellow sticky cards placed on three citrus varieties during D. citri active flight period from April to July in south Texas. Evaluation of mean trap catches of each color by repeated measures analysis of variance produced three separate groups: yellow traps caught significantly more D. citri adults than the other four traps; red and green traps caught significantly more D. citri than blue and white traps, which were not significantly different. Although the number of adult psyllid captured on all trap types significantly increased with time during the trapping period, the performance of traps did not change with time. Trap catches were also significantly influenced by the citrus species; traps placed on lemon trees captured more D. citri than those placed on sweet orange and grapefruit, suggesting that plant preference exhibited by D. citri may influence the performance of traps. The ratio of trap reflectance between the 680 to 700 nm and the 450 nm was significantly correlated with total trap catches in all host species studied. Thus, this index was a good indicator of the attractiveness of adult D. citri to colored traps. Additionally, we compared the reflectance values of young versus mature flush shoots of the three host plants used in this study as related to densities of D. citri recorded in colored traps. We discussed the importance of visual cues in the host finding behavior of adult D. citri.  相似文献   

19.
The search for effective female attractants emanating from the host or body of fruit flies has been an area of intensive research for over three decades. In the present study, bodies of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), were extracted with diethyl ether or methanol and subjected to gas chromatography–mass spectrometry. Analysis revealed substantial qualitative and quantitative differences between males from a laboratory culture and wild males captured alive in an orchard. Most notably, the hydrocarbon sesquiterpene (±)‐α‐copaene, which is known to be involved in the sexual behaviour of the species, was found in substantial amounts in wild males, but was not detected in laboratory males. In laboratory tests, 15 laboratory or wild male equivalents of diethyl ether extracts or combined diethyl ether and methanol extracts, or, to a lesser extent, methanol extracts alone, were found to attract virgin females. In a citrus orchard, traps baited with combined diethyl ether and methanol extracts of wild males attracted significantly more virgin females than traps baited with various doses of pyranone or blends of other compounds identified in the extracts or reported in the literature, such as ethyl acetate, ethyl‐(E)‐3‐octenoate, and 1‐pyrroline. Traps baited with blends of compounds, however, displayed substantial attractiveness compared to control (non‐baited) traps. These results are important for better understanding the mating system of C. capitata as well as for further improving existing monitoring and control systems.  相似文献   

20.
Asian citrus psyllid Diaphorina citri Kuwayama is extremely problematic worldwide, particularly where Huanglongbing (HLB) disease, the most serious and devastating of citrus diseases, is found. The threat is a result of its ability to transmit the causal agent of HLB, Candidatus Liberibacter asiaticus (CLas) bacterium. Improvements in proteomics, mass spectrometry, bioinformatics tools and gene ontology annotation facilitate the mapping and large‐scale identification and quantification of proteins. To date, only a few comparative proteomic studies report the developmental proteomic changes of hemimetabolous and plant–disease vector insects. Two‐dimensional gel electrophoresis analysis of D. citri total protein is able to detect qualitative and quantitative developmental differences. Liquid chromatography‐tandem mass spectrometry identifies 89 protein spots. Most proteins are metabolism and bioenergetics‐related. Nineteen protein spots are found to be implicated in stress/defence/immunity; 7 in development regulation; 9 in nervous system functions; 4 in the reproductive system; 23 in cytoskeleton and muscle organization; and 4 in movement, flight and other processes. Significant increases in the level of proteins related to structural constitution of the skeleton, stress/defence/immunity, reproduction system, muscles, locomotion and flight are found in adults, consistent with the fact that D. citri is a hemimetabolous insect, whereas proteins involved in developmental regulation are higher in the nymphal stage. The identification of these variably expressed proteins between the nymph and adult stages, linked with the basis of their physiological roles, will lead to a better understanding of the factors influencing development in D. citri and the regulation of some crucial metabolic pathways. It may also help to identify targets for genetic manipulation using RNA interference or other techniques to disrupt Asian citrus psyllid development, lifespan or its ability to transmit CLas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号