首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
光学方法同步记录成群前庭神经节细胞膜电位   总被引:4,自引:0,他引:4  
目的 :采用电压敏感染料和多位点光学成像系统研究前庭神经节细胞 (vestibularganglioncells ,VGCs)电生理特性。方法 :自新生小鼠内耳分离并培养的VGCs ,用吸光性电压敏感染料RH15 5染色后 ,多个或成群VGCs被同时成像于 16× 16记录单元Photodiodearrays (PDA)光学成像系统。 结果 :用高钾溶液灌流刺激时发现当VGCs膜电位变化时 ,膜表面的光吸收增强 ,光吸收度为 0 .2 3%± 0 .0 8%。并且所记录的光学反应具有波长特性。另外 ,在本实验条件下 ,光损伤和染料的药毒性副作用不明显或者可忽略不计。结论 :光学记录可以同步观测多个和成群VGCs膜电位变化 ,是电生理研究的新方法  相似文献   

2.
电压敏感染料成像(voltage sensitiVe dye imaging,VSDI)技术利用结合在神经细胞脂膜上的染料,将膜电位转化为荧光或光吸收信号,并用光学成像方法对神经电活动进行多点测量.VSDI在过去的50年内发展迅速,其良好的时空分辨率使它成为一种在介观(mesoscopic)时空尺度上研究神经元群体电活...  相似文献   

3.
昆虫神经生物学研究技术:细胞内记录   总被引:2,自引:1,他引:1  
王琛柱 《昆虫知识》2002,39(5):387-389
细胞内记录是昆虫神经生物学研究中的常用技术。它用来获得神经元兴奋和抑制过程及神经脉冲产生机制的信息。该技术的特点是把一根微电极的顶尖插入到神经细胞内进行电生理记录 ,这根电极还能用于向膜内输入电流。作者以对蝗虫Schistocercagregaria后胸神经节内的 2个运动神经元的活性记录为例介绍了这一技术  相似文献   

4.
神经电生理信号多道同步采集和分析系统   总被引:7,自引:2,他引:5  
Peng LH  Wu HX  Zhuang J  Ying SJ  Han D  Liu WZ  Tang JQ 《生理学报》2001,53(1):79-82
单细胞多点同步记录技术在国内外已经被广泛应用,但在国内仍缺乏与国产或日产细胞电生理记录仪器相匹配的多通道同步生物电信号采集与分析系统。本文介绍了新近研制的可进行双通道甚至晚多通道细胞电生理信号采集的神经细胞电生理信号采集与分析系统,及其关键技术及实现方法和应用实例。  相似文献   

5.
近年来,美国耶鲁大学医学院 L.B.Cohen 教授研究应用电一色染料对膜电位进行光学探测,并成功地同时监测了35个神经细胞的电活动。他认为这种新技术能够扩展到同时处理数百个细胞,远远超过了微电极技术所能记录的极限,这样就有可能揭开神经系统中各神经细胞之间的相互关系的秘密。这种新技术主要是用一组对细胞电位变化能够发生颜色变化反应的染料。将它们涂在脑或心肌组织表面时,它们可由于细胞电位即细胞质和它周围介质之间的电位差的改变而改变颜色,亦即改变相应部位对色光的吸收作用或出现荧光,或二者同时出现。这样,如果用一个直径为18~50μm 的激光束快速扫描组织表面,然后把组织的影像聚焦在一个由许多光检测器组成的阵列上,再把光检测器收到的信号用计算机处理显示,就能够看到组织内各个细胞的光学特性的变化,或画出荧光光谱。由于这些光学变化和电变化相关,所以就能由此探测到这些细胞的电活动,并能由此分析这些细胞活动之间的相互关系。这种新技术还可用于对单细胞有机体(如细菌)、细胞碎片和某些细胞器如腺粒体等的功能研究。由于  相似文献   

6.
《动物学研究》2012,(5):536
中国科学院武汉物理与数学研究所神经影像实验室建立于2007年4月,由国家杰出青年基金获得者徐富强研究员领导。综合不同层次和尺度的神经生物学的方法和技术是该实验室的显著特点。现已建立分子生物学、生物化学、神经环路示踪、微透析、电生理、光学成像、磁共振成像、动物行为等方法和技术,  相似文献   

7.
成年蜜蜂脑神经细胞的培养和电生理特征   总被引:1,自引:0,他引:1  
为了研究杀虫剂等对蜜蜂毒性作用的神经机制,需在体外建立成年蜜蜂脑神经细胞的分离培养和电生理记录技术并研究其正常电生理特征,而对成年蜜蜂脑神经细胞的分离培养和电生理特性的研究报道甚少。我们采用酶解和机械吹打相结合的方法获得了数量较多且活力较好的成年意大利蜜蜂Apis mellifera脑神经细胞,并用全细胞膜片钳技术研究了成年意大利蜜蜂脑神经细胞对电流和电压刺激的反应,获得了成年意蜂脑神经细胞的基本电生理特征以及钠电流和钾电流的特性。全细胞电流钳的记录结果表明,在体外培养条件下,细胞无自发放电发生,注射电流后仅引起细胞单次放电,引起细胞放电的阈电流平均为60.8±63 pA; 细胞动作电位产生的阈电位平均为−27.4±2.3 mV。用全细胞电压钳记录了神经细胞的钠电流和钾电流。钠电流的分离是在电压刺激下通过阻断钾通道和钙通道实现。细胞的内向钠电流在指令电压为−40~−30 mV左右激活,−10 mV达峰值,钠通道的稳态失活电压V1/2为−58.4 mV; 外向钾电流成份至少包括较小的快速失活钾电流和和较大的缓慢失活钾电流(占总钾电流的80%),其半激活膜电位V1/2为3.86 mV,无明显的稳态失活。结果提示缓慢失活钾电流的特征可能是细胞单次放电的机制之一。  相似文献   

8.
本文介绍了近年来应用微电极技术对内分泌腺细胞生物电活动的研究。内分泌腺细胞均具有一定的膜电位,大都在—40~—70mV之间。内分泌腺细胞的膜电位也象神经细胞的一样,主要决定于膜内外K~ 浓度差。有些内分泌腺细胞能自发地或在刺激物的作用下诱发地产生动作电位。一些内分泌腺的正常生理刺激物在引起腺细胞分泌的同时,也诱发腺细胞的电活动。胰岛β细胞和腺垂体细胞的动作电位主要是Ca电位,嗜铬细胞的动作电位则主要是Na电位。  相似文献   

9.
膜片钳技术与其它技术的结合在神经科学中的应用   总被引:2,自引:0,他引:2  
膜片钳技术作为一种先进的电生理技术,在生命科学研究中不仅已得到了广泛的应用,而且已与其它许多技术如Fura-2显微荧光测钙技术、碳纤电极局部电化学微量检测技术以及单细胞逆转录多聚酶链式反应技术等进行了有机的结合。本文仅就此技术与其它技术的结合及在解决神经生物学跨膜信号转导问题中的应用情况作一综述。  相似文献   

10.
目的和方法 :4 0 0~ 5 0 0 μm大鼠水平脑切片含有封闭的EC 海马环路。强直电刺激 (60Hz ,2s)海马Schaeffer侧支诱发癫痫放电 ,全细胞记录CA1胞体层单个神经元电活动 ,同步记录相应树突区细胞外场电位 ,探讨单个神经元膜电位振荡特性与细胞外癫痫电活动之间的关系。结果 :①强直电刺激诱发CA1神经元膜电位后放性振荡行为呈宽频特征 (3~ 10 0Hz)。以θ节律多见 ,跟随在刺激引起的膜电位去极化或超极化偏移 (paroxysmaldepolarizingorhyperpolaringshift,PDSorPHS)之后 ,振荡波的上升支和下降支分别由膜电位去极化 超极化或超极化 去极化成分构成 ;②逐渐增强的IPSP构成了膜电位振荡的起搏成分 ,继而反弹形成锋电位和阈下振荡 ,与细胞外癫痫样电活动同步 ,并促成癫痫放电由紧张性向阵挛性形式转变 ;③发现了电偶联电位 (spikelets)以及细胞之间的染料偶联现象。结论 :单个神经元作为振荡器可以启动群体神经元超同步化癫痫样电活动 ;缝隙连接可能参与了膜电位振荡的启动与场电位癫痫样电活动的同步作用。  相似文献   

11.
Recent developments in the design of voltage-sensitive dyes and of recording apparatuses for detecting voltage-dependent changes in the optical properties of such dyes have established voltage-sensitive dye recording as an important technique for assessing the functional development of neuronal circuits in the brain and spinal cord. Here we discuss general technical issues regarding the recording of voltage-sensitive dye signals and describe studies that have utilized this approach to follow the development of sensory and sensorimotor circuits in the embryonic brain stem. Functional imaging through voltage-sensitive dye recording permits a noninvasive analysis of synaptic development and function at submillisecond temporal resolution in widely distributed circuits. These advantages are particularly valuable in assessing sensorimotor circuit development at early stages when neurons are small and synapses are fragile.  相似文献   

12.
Monitoring membrane potentials by multisite optical recording techniques using voltage-sensitive dyes is ideal for direct analysis of network signaling. We applied this technology to monitor fast and slow excitability changes in the enteric nervous system and in hundreds of neurons simultaneously at cellular and subcellular resolution. This imaging technique presents a powerful tool to study activity patterns in enteric pathways and to assess differential activation of nerves in the gut to a number of stimuli that modulate neuronal activity directly or through synaptic mechanisms. The optical mapping made it possible to record from tissues such as human enteric nerves, which were, until now, inaccessible by other techniques.  相似文献   

13.
Fast voltage-sensitive dyes (VSD) are widely used in modern neuroscience for optical recording of electrical potentials at many levels, from single cell compartment to brain areas, containing populations of many neural cells. The more lipophilic a VSD, the better signal-to-noise ratio of the optical signal, but there are no effective ways to deliver a water-insoluble dye into the membrane of live cell. Here we report a new protocol based on rapid biolistic delivery of VSDs, which is optimal for further recordings of optical signals from live neurons of rat brain slices. This protocol allows us to stain locally (150 mkm) neural somata of brain structures with a Golgi-like pattern, and a VSD propagates even to distant neurites of stained cells very quickly. This technique also can be used for rapid local delivery of any lipophilic and water-insoluble substances into live cells, further optical recording of neural activity, and analysis of potential propagation in a nerve cell.  相似文献   

14.
Clinical methods used to assess the electrical activity of excitable cells are often limited by their poor spatial resolution or their invasiveness. One promising solution to this problem is to optically measure membrane potential using a voltage-sensitive dye, but thus far, none of these dyes have been available for human use. Here we report that indocyanine green (ICG), an infrared fluorescent dye with FDA approval as an intravenously administered contrast agent, is voltage-sensitive. The fluorescence of ICG can follow action potentials in artificial neurons and cultured rat neurons and cardiomyocytes. ICG also visualized electrical activity induced in living explants of rat brain. In humans, ICG labels excitable cells and is routinely visualized transdermally with high spatial resolution. As an infrared voltage-sensitive dye with a low toxicity profile that can be readily imaged in deep tissues, ICG may have significant utility for clinical and basic research applications previously intractable for potentiometric dyes.  相似文献   

15.
16.
Complete understanding of the ontogenesis and early development of electrical activity and its related contraction has been hampered by our inability to apply conventional electrophysiological techniques to the early embryonic heart. Direct intracellular measurement of electrical events in the early embryonic heart is impossible because the cells are too small and frail to be impaled with microelectrodes. Optical signals from voltage-sensitive dyes have provided a new and powerful tool for monitoring changes in membrane potential in a wide variety of living preparations. With this technique it is possible to make optical recordings from cells which are inaccessible to microelectrodes. An additional advantage of the optical method for recording membrane potential activity is that electrical activity can be monitored simultaneously from many sites in a preparation. Thus, applying a multiple-site optical recording method with a 100- or 144-element photodiode array and voltage-sensitive dyes, we have been able to monitor for the first time spontaneous electrical activity in pre-fused cardiac primordia in early chick embryos at the 6- and early 7-somite stages of development; we have been able to determine that the time of initiation of the heartbeat is the middle period of the 9-somite stage. In the rat embryonic heart, the onset of spontaneous electrical activity and contraction occurs at the 3-somite stage. This article describes ionic properties of the spontaneous action potential and genesis of excitation-contraction coupling in the early embryonic chick and rat hearts. In addition, an improved view of the ontogenetic sequence of spontaneous electrical activity and its implications for excitation-contraction coupling in the early embryonic heart are proposed and discussed.  相似文献   

17.
An improved method for making fast quantitative determinations of membrane potential with voltage-sensitive dyes is presented. This method incorporates a high-speed, random-access, laser-scanning scheme (Bullen et al., 1997. Biophys. J. 73:477-491) with simultaneous detection at two emission wavelengths. The basis of this ratiometric approach is the voltage-dependent shift in the emission spectrum of the voltage-sensitive dye di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS). Optical measurements are made at two emission wavelengths, using secondary dichroic beamsplitting and dual photodetectors (<570 nm and >570 nm). Calibration of the ratiometric measurements between signals at these wavelengths was achieved using simultaneous optical and patch-clamp measurements from adjacent points. Data demonstrating the linearity, precision, and accuracy of this technique are presented. Records obtained with this method exhibited a voltage resolution of approximately 5 mV, without any need for temporal or spatial averaging. Ratiometric recordings of action potentials from isolated hippocampal neurons are used to illustrate the usefulness of this approach. This method is unique in that it is the first to allow quantitative determination of dynamic membrane potential changes in a manner optimized for both high spatiotemporal resolution (2 micrometers and <0.5 ms) and voltage discrimination.  相似文献   

18.
Recent evidencesuggests that changes in membrane potential influence the proliferationand differentiation of keratinocytes. To further elucidate the role ofchanges in membrane potential for their biological fate, the electricalbehavior of keratinocytes needs to be studied under complex conditionssuch as multilayered cultures. However, electrophysiological recordingsfrom cells in the various layers of a complex culture would beextremely difficult. Given the high spatial resolution of confocalimaging and the availability of novel voltage-sensitive dyes, wecombined these methods in an attempt to develop a viable alternativefor recording membrane potentials in more complex tissue systems. As afirst step, we used confocal ratiometric imaging of fluorescence resonance energy transfer (FRET)-based voltage-sensitive dyes. We thenvalidated this approach by comparing the optically recorded voltagesignals in HaCaT keratinocytes with the electrophysiological signalsobtained by whole cell recordings of the same preparation. Wedemonstrate 1) that optical recordings allow precisemultisite measurements of voltage changes evoked by the extracellularsignaling molecules ATP and bradykinin and 2) thatresponsiveness to ATP differs in various layers of cultured keratinocytes.

  相似文献   

19.
Given the appropriate multicell electrophysiological techniques, small networks of cultured neurons (microcultures) are well suited to long-term studies of synaptic plasticity. To this end, we have developed an apparatus for optical recording from cultured vertebrate neurons using voltage-sensitive fluorescent dyes (Chien, C.-B., and J. Pine. 1991. J. Neurosci. Methods. 38:93-105). We evaluate here the usefulness of this technique for recording action potentials and synaptic potentials in microcultures of neurons from the rat superior cervical ganglion (SCG). After extensive dye screening and optimization of conditions, we chose the styryl dye RH423, which gave fast linear fluorescence changes of approximately 1%/100 mV for typical recordings. The root mean square noise of the apparatus (limited by shot noise) was typically 0.03%, equivalent to 3 mV of membrane potential. Illumination for at least 100 flashes of 100 ms each caused no noticeable photodynamic damage. Our results show that voltage-sensitive dyes can be used to record from microcultures of vertebrate neurons with high sensitivity. Dye signals were detected from both cell bodies and neurites. Signals from presumptive dendrites showed hyperpolarizations and action potentials simultaneous with those in the cell body, while those from presumptive axons showed delayed propagating action potentials. Subthreshold synaptic potentials in the cell body were occasionally detectable optically; however, they were usually masked by signals from axons passing through the same pixel. This is due to the complex anatomy of SCG microcultures, which have many crisscrossing neurites that often pass over cell bodies. Given a simpler microculture system with fewer neurites, it should be possible to use dye recording to routinely measure subthreshold synaptic strengths.  相似文献   

20.
The pre-B?tzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca(2+) imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a x20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号