首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
We have recently reported that neolacto series gangliosides (NeuAc-nLc) are increased during granulocytic differentiation of human myelogenous leukemia cell line HL-60 cells induced by retinoic acid and that HL-60 cells are differentiated into mature granulocytes when the cells are cultivated with NeuAc-nLc (Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M. (1988) J. Biol. Chem. 263, 7443-7446). In contrast to these wild-type-HL-60 cells, HL-60 cells resistant to differentiation induction by retinoic acid showed a markedly decreased content of gangliosides, especially NeuAc-nLc, and did not show any increase in the content of gangliosides when cultivated with retinoic acid. Neutral glycosphingolipids, the precursors of gangliosides, were not accumulated in these resistant cells. When retinoic acid-resistant HL-60 cells were cultivated in the presence of NeuAc-nLc, the cells were found to be differentiated into mature granulocytes on morphological and functional criteria. The differentiation of cells was dependent on the concentration of gangliosides and was accompanied by inhibition of cell growth. Wild-type HL-60 cells differentiated by NeuAc-nLc showed the changes in ganglioside composition, which were similar to those in wild-type HL-60 cells differentiated by retinoic acid; among the gangliosides changed, 2----3 sialylparagloboside and 2----3 sialylnorhexaosylceramide were increased. These findings suggest (a) that the synthesis of particular NeuAc-nLe molecules is an important step for retinoic acid-induced granulocytic differentiation and this step could be bypassed or replaced by exogenous NeuAc-nLc, and (b) that the defective synthesis of particular NeuAc-nLc molecules is responsible for the failure of differentiation induction in retinoic acid-resistant HL-60 cells by retinoic acid.  相似文献   

3.
4.
Cyclo-oxygenase (COX) production in human promyelocytic leukaemia (HL-60) cells was studied during monocytic differentiation induced by 1 alpha, 25-dihydroxyvitamin D3 (24 nM; 3 days) or phorbol 12-myristate 13-acetate (100 nM; 1 day), or during granulocytic differentiation induced by retinoic acid (1 microns; 4 days). Undifferentiated or differentiated HL-60 cells were labelled with [35S]methionine, and membrane-bound COX was solubilized and quantified by SDS/PAGE. Immunoprecipitated 35S-labelled COX from cells induced to differentiate into monocytic or granulocytic lineage were clearly detected on the autoradiograms as a protein of approx. 70 kDa molecular size, whereas only a very faint COX band was detected in untreated HL-60 cells. During both monocytic and granulocytic differentiation, COX activity (measured by the conversion of exogenous arachidonic acid into prostaglandin E2) was dramatically increased. In addition, thromboxane synthesis was preferentially enhanced during monocytic differentiation. HL-60 cells, induced to differentiate into the monocytic or granulocytic lineage, provide a useful tool to investigate the cellular mechanisms involved in regulation of the synthesis of individual prostanoid-metabolizing enzymes.  相似文献   

5.
Exposure of HL-60 leukemia cells to either 12-O-tetradecanoylphorbol-13-acetate (TPA), dimethylsulfoxide (DMSO), exogenous gangliosides GM3, GM1, or bovine brain ganglioside mixture (BBG) resulted in a marked inhibition of the growth of cells. The order of the inhibitory potency was TPA greater than GM3 greater than DMSO greater than BBG greater than GM1. In contrast, sulfatides were without effect on cellular replication. Treatment of HL-60 cells with TPA or GM3 induced differentiation along the monocyte/macrophage lineage, while treatment with DMSO induced maturation along the granulocytic pathway. These effects were accompanied by more than a twofold increase in protein kinase C (PKC) activity. In contrast, treatment with GM1, BBG, or sulfatides caused only a relatively small increase in PKC activity. The activity of CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase (ST1), a key enzyme for membrane gangliosides synthesis, in HL-60 cells was also influenced by the exposure to TPA, GM3, DMSO, GM1, or sulfatides. The inducers of differentiation, TPA and DMSO, caused an increase in ST1 activity, whereas GM3, which also induced cellular differentiation, inhibited ST1 activity, perhaps through the action of end-product inhibition. The non-inducers of differentiation, GM1 and sulfatides, also increased the activity of ST1, but to a much lesser extent. The findings suggest that the direct or indirect modulation of PKC activity by some of these agents may be involved, at least in part, in the regulation of cellular growth and differentiation. Furthermore, it is conceivable that differences in PKC activity may be responsible for the changes in ST1 activity associated with cell differentiation and proliferation.  相似文献   

6.
We previously reported that the synthesis of NeuAc(alpha 2-3)Gal(beta 1-4)GlcCer (GM3) ganglioside was preferentially enhanced during the differentiation of HL-60 cells into a monocyte/macrophage lineage induced by 12-O-tetradecanoylphorbol-13-O-acetate (TPA). Since exogenously added GM3 ganglioside was shown to be able to induce the differentiation of HL-60 cells into the monocyte/macrophage lineage in a synthetic medium, the functional role of the GM3 ganglioside increase during the differentiation of HL-60 cells has become the subject of much interest. In the present study, we investigated the activity of CMP-NeuAc:lactosylceramide sialyltransferase, which catalyzes the synthesis of GM3 ganglioside from lactosylceramide, in cells undergoing differentiation induced by two different reagents, TPA and 1 alpha,25-dihydroxy-vitamin D3, which induce the differentiation of HL-60 cells into the monocyte/macrophage lineage through different modes of action. We showed that the activation of CMP-NeuAc:lactosylceramide sialyltransferase and the increase in GM3 ganglioside were not related to the differentiated lineage but to the specific action of TPA, i.e. activation of protein kinase C.  相似文献   

7.
A remarkable increase in monosialo-ganglioside GM3 was observed during the monocytic differentiation of HL-60 cells induced by 12-0-tetradecanoyl-phorbol-13-acetate(TPA). On the other hand, when the cells were cultured with exogenously-added ganglioside GM3 in serum-free conditions, their differentiation along a monocytic lineage was demonstrated with simultaneous complete growth inhibition. Other gangliosides such as ganglioside GM1 showed no effects on cell differentiation, exhibiting instead stimulatory actions on the cell growth. These results indicate that a physiologically-existent, membranous ganglioside GM3, which specifically increases during monocytic cell differentiation, might play a primary role as a trigger in the monocytic cell differentiation.  相似文献   

8.
HL-60 cells, a human promyelocytic cell line, can be induced to differentiate along either monocytic or granulocytic pathways. The production of the second complement component, C2, is a marker of monocytic differentiation and can be up-regulated by cytokine stimulation. We studied the effects of IFN-gamma and vitamin D3, two factors previously shown to induce monocytic differentiation of HL-60 cells, on C2 production and C2 mRNA content. We found that HL-60 cells produce little if any C2 but can be induced to synthesize C2 by IFN-gamma. Vitamin D3 pretreatment followed by IFN-gamma stimulation resulted in earlier and greater production of C2. HL-60 cells did not contain detectable amounts of C2 mRNA unless they were stimulated with IFN-gamma. Pretreatment with vitamin D3 followed by IFN-gamma stimulation resulted in a 147% increase in C2 mRNA content compared with IFN-gamma stimulation alone. These results indicate that the up-regulation of C2 production by IFN-gamma and vitamin D3 is pretranslational although additional posttranslational effects were not excluded. C2 production by these cells is a useful marker of monocytic differentiation.  相似文献   

9.
We have determined that the production of a metastasis-associated neutral glycosphingolipid, isogloboside (iGb(4)Cer, GalNAcbeta1-3Galalpha1-3Galbeta1-4Glcbeta1-O-ceramide) is associated with the loss of G(M3) synthase activity. Assays for neutral glycosphingolipid-forming glycosyltransferases in cells producing various levels of iGb(4)Cer revealed no consistent differences that could account for the difference in iGb(4)Cer biosynthesis. However, comparison of the activity of G(M3) synthase in homogenates of these two cell types revealed that cells that did not synthesize iGb(4)Cer had activity significantly greater than that of cells possessing this antigen. Furthermore, somatic cell hybrids generated using clones of the iGb(4)Cer -producing and nonproducing cell lines lacked iGb(4)Cer while possessing high levels of G(M3) synthase activity. When iGb(4)Cer-producing cells were transfected with a G(M3) synthase expression vector, all of the resultant clones were negative for iGb(4)Cer production. The results of these studies clearly show that the presence of G(M3) synthase prevents the formation of iGb(4)Cer in these cells.  相似文献   

10.
We have previously reported that human B cell differentiation is accompanied by sequential changes in glycosphingolipid expression. Pre-B cells contain lacto-series type II chain-based glycolipids and GM3 ganglioside; mature/activated B cells do not synthesize lacto-series compounds but express GM3 and globo-series glycolipids (Gb3 and Gb4); terminally differentiated B cells, in addition to these compounds, also contain GM2 ganglioside. At the cell surface, Gb3, Gb4 and GM2 constitute stage-specific antigens. To elucidate the biosynthetic mechanism leading to these modifications we have compared activities of the glycosyltransferases involved in the core structure assembly and the first elongation steps of neo-lacto, ganglio- and globo-series glycolipids. These glycosyltransferase activities have been measured in B cell lines and normal B lymphocytes at various stages of differentiation. We first determined the optimal requirements of the four glycosyltransferases which wynthesize Lc3, GM3, Gb4 and GM2 glycolipids in B lymphocytes and then tested these enzymes and the Gb3 synthetase in the selected B cells. The following results were obtained: ß1 → 3N-Acetylglucosaminyltransferase (Lc3 synthetase) has a high activity in pro- and pre-B cells whereas it is undetectable in more differentiated cells; α2 → 3 sialyltransferase (GM3 synthetase) is activated from the pre-B cell stage to the terminally differentiated myeloma cells; α → 4 galactosyltransferase (Gb3 synthetase) is only detected in cells representing the late stages of B cell differentiation; ß1 → 3N-Acetylgalactosaminyltransferase (Gb4 synthetase) is only found in some lymphoblastoid cell lines, representative of activated B cells whereas the ß1 → 4 N-Acetylgalactosaminyltransferase (GM2 synthetase) has a high activity in these lymphoblastoid cell lines and in terminally differentiated myeloma cells. These results suggest that the sequential shifts in the three major glycosphingolipid series observed during B cell differentiation are mostly due to sequential activations of the corresponding glycosyltransferases.  相似文献   

11.
Sensitive staining methods with wheat germ agglutinin were developed for the detection of glycosphingolipids of neolacto series (A) and gangliosides with a terminal N-acetylneuraminyl residue (B) on thin-layer chromatograms. (A) Neolacto series glycosphingolipids were treated by beta-galactosidase on the chromatograms in the presence of taurodeoxycholate. Then the chromatograms were incubated with biotinated wheat germ agglutinin followed by incubation with a complex of avidin and biotinated horseradish peroxidase, and the reaction was detected by 4-chloro-1-naphthol. In the case of gangliosides, sialidase treatment on the chromatograms was performed before the beta-galactosidase treatment. The sensitivity of the method for Lc3Cer, nLc4Cer, sialyl-nLc4Cer, and sialyl-nLc6Cer was 4 pmol, 7.6 pmol, 2.9 pmol and 1.4 pmol, respectively. (B) The gangliosides on the chromatograms were oxidized by periodic acid and reduced by NaBH4. Then the chromatograms were stained with wheat germ agglutinin as mentioned above. As little as 0.5 pmol of GM3, NeuAc-nLc4Cer, and NeuAc-nLc6Cer was detected by this method, whereas the detected limits for these gangliosides were 10 pmol, 10 pmol and 2 pmol, respectively, when periodate oxidation was omitted. GM4, GD3 and GD1a were an order less reactive than GM3, GM2, GM1 or GD1b were not stained under the same condition. In contrast to NeuAc-containing gangliosides, any gangliosides with N-glycolylneuraminic acid were not stained by the method in (B).  相似文献   

12.
The expressions of β1,3-N-acetylglucosamonyltransferase-2 and -8 (β3GnT-2, β3GnT-8),-the two main glycosyltransferases responsible for the synthesis of poly-N-acetyllactosamine (polyLacNAc) in glycans, and β3GnT-5 participating in the syntheses of sphingoglycolipids were studied in leukemia cell lines during differentiation using RT-PCR method. β3GnT-2 and β3GnT-8 distribute widely in six myeloid and monocytoid leukemia cell lines with different abundances, while β3GnT-4 was only present in NB4 cells. ATRA (all-trans retinoic acid) and dimethylsulfoxide (DMSO), which induce the differentiation of HL-60 and NB4 (two human acute myeloid leukemia cell lines) to myelocytic lineage, up-regulated these two enzymes with various degrees at 2 and 72 h of treatment. In HL-60 cells treated with ATRA, the increase of β3GnT-8 was more than β3GnT-2, while in NB4 cells treated with DMSO, the increase of β3GnT-2 was more than β3GnT-8. However, when HL-60 and NB4 were differentiated to monocytic lineage induced by phorbol 12-myristate 13-acetate the expressions of β3GnT-2 and β3GnT-8 showed no alterations or the increase of expressions was far less than those in myelocytic differentiation. By means of FITC-labeled tomato lectin affinity staining and flow-cytometry, it was found that the product of β3GnT-2 and -8, polyLacNAc was also increased on the cell surface of HL-60 and NB4 treated with ATRA or DMSO, but unchanged when treated with PMA. These results were in accordance with the up-regulation of the mRNAs of β3GnT-2 and -8. The expression of β3GnT-5, however, was not changed both in myelocytic and monocytic differentiations. The difference in the up-regulation of β3GnT-2 and -8, especially their products may become a useful index to discriminate the myelocytic and monocytic differentiation of leukemia cells.  相似文献   

13.
14.
HL-60, a human promyelocytic leukemia cell line, can be differentiated to myeloid lineage by all- trans retinoic acid (ATRA), dimethylsulfoxide (DMSO) and n -butyric acid (n -BA), or to monocytoid(monocytic/macrophagic) lineage by phorbol-12-myristate-13-acetate (PMA) and ganglioside GM(3). The activity alterations of N -acetylglucosaminyltransferase III and V (GnT-III, GnT-V) as well as alpha-1,6-fucosyl-tranferase (alpha1,6 Fuc T) were studied during the differentiation of HL-60 cells by the above-mentioned five inducers using the fluorescence (PA)-labeled glycan-HPLC method for GnT assays and biotin-labeled glycan-LCA affinity chromatography combined with the HRP-avidin colorimetric method for alpha1,6 Fuc T assay. It was observed that after 3 days, all three enzymes decreased in HL-60 cells induced by 1 micromol/l ATRA and 0.6 mmol/l n-BA, while GnT-III and alpha1,6 Fuc T increased, but GnT-V still decreased after induction by 1% DMSO. GnT-V and alpha1,6 Fuc T declined, while GnT-III was elevated after induction by 0.1 micromol/l PMA for 3 days. In contrast, GnT-III increased after the treatment with 50 micromol/l GM(3)for 3 or 6 days, but GnT-V was not appreciably changed and alpha1,6 FucT was elevated after 6 days of GM(3)treatment. It may be concluded that the decrease of GnT-V is the common change in myeloid differentiation and the increase of GnT-III is the general alteration in monocytoid differentiation. The changes in the activities of glycosyltransferases were consistent with the structural changes in surface N -glycans previously found in our laboratory, i.e. that the antennary number of N -glycans decreased during myeloid differentiation by ATRA, and the amount of bisecting GlcNAc in N -glycans increased during monocytoid differentiation by PMA.  相似文献   

15.
Two types of amphoteric glycosphingolipid found in the earthworm Pheretima hilgendorfi, PC(-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->1)Cer (1) and PC(-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->1)Cer (2), and their derivatives (4, 5) were synthesized. These were examined for their ability to enhance production of interleukin-8 (IL-8), a potent inflammatory cytokine involved in neutrophil chemotaxis, in a TNFalpha-stimulated granulocytic HL-60 cells. Compounds 1 and 2 were found to be potent enhancers of IL-8 production.  相似文献   

16.
17.
蛋白激酶C亚型在HL—60细胞诱导分化中的变化   总被引:1,自引:0,他引:1  
用全反式维甲酸(ATRA)或佛波酯(PMA)处理人早幼粒白血病细胞(HL-60)3天,用形态学,NBT还原实验,特异性和非特异性酯酶测定,证明细胞分别向粒细胞或单核/巨噬细胞分化。通过免疫组化法观察了蛋白激酶C(PKC)α,βⅠ和βⅡ亚型在分化后的变化。结果显示,ATRA可引起HL-60细胞PKCα,βⅠ和βⅡ的含量升高,分别为对照的5.0,2.8和4.2倍,并存在从胞膜向胞质转位。PMA则使PC  相似文献   

18.
In a series of studies, we have reported that 1,25-dihydroxyvitamin D (3), a known stimulator of monocytic differentiation, primes bone marrow progenitor cells or promyelocytic HL-60 cells to the actions of several factors involved in both monocytic and granulocytic differentiation. In the present study, we have further examined the combinational effects of 1,25-dihydroxyvitamin D (3) and the other inducer of granulopoiesis, granulocyte colony-stimulating factor, on non-fractionated native murine bone-marrow cell culture. Over 6 days of treatment, human granulocyte colony-stimulating factor sustained cell viability, increased the size of small rounded non-adherent cells, and induced granulocytic differentiation, while 1,25-dihydroxyvitamin D (3) decreased cell viability, promoted the development of large adherent flattened cells, and upregulated some monocytic differentiation markers. Combining these two factors over 6 days synergistically upregulated phagocyte activity, membrane-bound interleukin-1alpha, NAD(P)H oxidase, monocytic Mac-1, and non-specific esterase. Similar effects were observed in successive treatment with granulocyte colony-stimulating factor followed by 1,25-dihydroxyvitamin D (3), but successive treatment in reverse order was somewhat less effective. No combinational treatment upregulated granulocytic lactate dehydrogenase, Gr-1, or chloroacetate esterase to as great an extent as was obtained with granulocyte colony-stimulating factor alone, indicating that granulocytic differentiation is attenuated by addition of 1,25-dihydroxyvitamin D (3). Therefore, in contrast to our previous data, the present findings suggest that granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D (3)-induced monocytic differentiation in our murine bone-marrow cell cultures. Considering previously published data, we also suggest that these synergistic effects may be mainly due to the combination of two distinct effects such as the primary proliferative effects of granulocyte colony-stimulating factor on multipotent stem cells and the subsequent differentiative effects of 1,25-dihydroxyvitamin D (3) on proliferating cells.  相似文献   

19.
20.
Human myeloid differentiation is accompanied by a decrease in cell proliferation. Because the translation rate is an important determinant of cell proliferation, we have investigated translation initiation during human myeloid cell differentiation using the HL-60 promyelocytic leukemia cell line and the U-937 monoblastic cell line. A decrease in the translation rate is observed when the cells are induced to differentiate along the monocytic/macrophage pathway or along the granulocytic pathway. The inhibition in protein synthesis correlates with specific regulation of two repressors of translation initiation, 4E-BP1 and 4E-BP2. Induction of HL-60 and U-937 cell differentiation into monocytes/macrophages by IFN-gamma or PMA results in a dephosphorylation and consequent activation of 4E-BP1. Dephosphorylation of 4E-BP1 was also observed when U-937 cells were induced to differentiate into monocytes/macrophages following treatment with retinoic acid or DMSO. In contrast, treatment of HL-60 cells with retinoic acid or DMSO, which results in a granulocytic differentiation of these cells, decreases 4E-BP1 amount without affecting its phosphorylation and strongly increases 4E-BP2 amount. Taken together, these data provide evidence for differential regulation of the translational machinery during human myeloid differentiation, specific to the monocytic/macrophage pathway or to the granulocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号