首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans Synechococcus PCC 6301) was used to generate novel enzymes in Escherichia coli. Residues in C-terminal loop 6 of the / barrel structure of the large subunit were changed. Replacement of valine 331 with alanine caused a 90% reduction in V max but did not alter the enzyme's relative specificity towards either of its gaseous substrates, CO2 and O2. However replacement of alanine 340 with glutamate decreased the enzyme's specificity for CO2 but had no significant effect on either the K m for ribulose-1,5-bisphosphate or CO2 or on V max. In contrast replacing a small cassette of residues 338-341 produced a small increase in the specificity factor.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - CABP 2-carbox-yarabinitol-1,5-bisphosphate We thank Karen Moore for the statistical analysis of the specificity factors. We acknowledge helpful discussions with Jim Pitts and Richard Pickersgill. This work was aided by the invaluable technical assistance of Iain Major.  相似文献   

2.
In contrast to other plants the plastid genome of Acetabularia is larger in size and shows a high degree of variability. This study on the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase demonstrates that strongly conserved areas also exist in the plastid genome of the Dasycladaceae. Searching for differences in the amino acid sequence of the large subunit from Acetabularia mediterranea and Acicularia schenckii, proteolytic peptides which differ in their elution behaviour in reverse-phase high-performance liquid chromatography were sequenced. Only six amino acids were found to be exchanged in the large subunit from these two species. Since these two species diverged approx. 150 million years ago, these results imply that 0.84 amino-acid exchanges per 100 amino acids have occurred in 108 years, underlining the strong conservatism of the large subunit.Abbreviations A Acetabularia mediterranea - Ac. Acicularia schenckii - HPLC high-performance liquid chromatography - LSU large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate  相似文献   

3.
Xylulose-1,5-bisphosphate in preparations of ribulose-1,5-bisphosphate (ribulose-P2) arises from non-enzymic epimerization and inhibits the enzyme. Another inhibitor, a diketo degradation product from ribulose-P2, is also present. Both compounds simulate the substrate inhibition of ribulose-P2 carboxylase/oxygenase previously reported for ribulose-P2. Freshly prepared ribulose-P2 had little inhibitory activity. The instability of ribulose-P2 may be one reason for a high level of ribulose-P2 carboxylase in chloroplasts where the molarity of active sites exceeds that of ribulose-P2. Because the KD of the enzyme/substrate complex is ≤1 μM, all ribulose-P2 generated in situ may be stored as this complex to prevent decomposition.  相似文献   

4.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

5.
The ribulose-1,5-bisphosphate carboxylase/oxygenase purified from maize (a C4 monocot) to homogeneity has a MW of532 000 and sedimentation coeffici  相似文献   

6.
When photoheterotrophic Euglena gracilis Z Pringsheim was subjected to nitrogen (N)-deprivation, the abundant photosynthetic enzyme ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was rapidly and selectively degraded. The breakdown began after a 4-h lag period and continued for a further 8 h at a steady rate. After 12 h of starvation, when the amount of Rubisco was reduced to 40%, the proteolysis of this enzyme slowed down while degradation of other proteins started at a similar pace. This resulted in a decline of culture growth, chloroplast disassembly — as witnessed by chlorophyll (Chl) loss — and cell bleaching. Experiments with spectinomycin, an inhibitor of chloroplastic translation, indicated that there was an absolute increase in the rate of Rubisco degradation in the N-deprived culture as compared with control conditions, where no significant carboxylase breakdown was detected. Oxidative aggregation of Rubisco (as detected by non-reductive electrophoresis) and association of the enzyme to membranes increased with time of N-starvation. Fluorescent labeling of oxidized cysteine (Cys) residues with monobromobimane indicated a progressive oxidation of Cys throughout the first hours of N-deprivation. It is concluded that Rubisco acts as an N store in Euglena, being first oxidized, and then degraded, during N-starvation. The mobilization of Rubisco allows sustained cell growth and division, at almost the same rate as the control (non-starved) culture, during 12 h of N-deprivation. Afterwards, breakdown is extended to other photosynthetic structures and the whole chloroplast is dismantled while cell growth is greatly reduced.Abbreviations Chl chlorophyll - Cys cysteine - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate We thank Drs. Pablo Vera and Ismael Rodrigo (Univ. Politécnica, Valencia, Spain) for advice and facilities in raising and collecting the anti-Rubisco serum. This work was supported by grants PB87-0353 and PB92-0821 of DGICYT and by a fellowship of the Spanish Ministerio de Educación y Ciencia (awarded to C.G.-F.).  相似文献   

7.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

8.
G. F. Wildner  J. Henkel 《Planta》1979,146(2):223-228
Ribulose-1,5-bisphosphate carboxylase-oxygenase is deactivated by removal of Mg++. The enzyme activities can be restored to a different extent by the addition of various divalent ions in the presence of CO2. Incubation with Mg++ and CO2 restores both enzyme activities, whereas, the treatment of the enzyme with the transition metal ions (Mn++, Co++, and Ni++) and CO2 fully reactivates the oxygenase: however, the carboxylase activity remains low. In experiments where CO2-free conditions were conscientiously maintained, no reactivation of RuBP oxygenase was observed, although Mn++ ions were present. Other divalent cations such as Ca++ and Zn++, restore neither the carboxylase nor the oxygenase reaction. Furthermore, the addition of Mn++ to the Mg++ and CO2 preactivated enzyme significantly inhibited carboxylase reactions, but increased the oxygenase reaction.Abbreviation RuBP ribulose-1,5-bisphosphate. The enyme unit for RuBP carboxylase is defined as mol CO2 fixed·min-1 and for the RuBP oxygenase as mol O2 consumed · min-1  相似文献   

9.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

10.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (fallover). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.  相似文献   

11.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

12.
The solubilization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the membrane fraction was studied in whole leaf extracts and chloroplasts from pea. The amount of membrane-bound Rubisco was dependent on the pH of the chloroplastic lysate buffer. Maximum binding was found at pH 8.0, with about 8% of total leaf Rubisco being bound. The binding of Rubisco to the membranes was strong, and it was not released by repeated washing with hypotonic buffer or by changing ionic strength. Detergents such as Triton X-100, Tween 20, deoxycholate and dodecylsulfate were effective in solubilizing the membrane-bound Rubisco. Triton X-100 was most effective in the range of 0.04% to 0.2% and it solubilized Rubisco from the membrane without any decrease in enzyme activity.Abbreviations BSA bovine serum albumin - CABP carboxyarabinitol-1,5-bisphosphate - DTT dithiothreitol - LDS lithium dodecylsulfate - LHC light-harvesting chlorophyll protein complex - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase - SDS sodium dodecylsulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

13.
14.
15.
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 mol photons m-2s-1), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.Abbreviations CA1P carboxyarabinitol 1-phosphate - CABP carboxyarabinitol bisphosphate - PFD photon flux density between 400 and 700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

16.
R. Oelmüller  G. Dietrich  G. Link  H. Mohr 《Planta》1986,169(2):260-266
Phytochrome-controlled appearance of ribulose-1,5-bisphosphate carboxylase (RuBP-Case) and its subunits (large subunit LSU, small subunit SSU) was studied in the cotyledons of the mustard (Sinapis alba L.) seedling. The main results were as follows: (i) Control of RuBPCase appearance by phytochrome is a modulation of a process which is turned on by an endogenous factor between 30 and 33 h after sowing (25° C). Only 12 h later the process begins to respond to phytochrome. (ii) The rise in the level of RuBP-Case is the consequence of a strictly coordinated synthesis de novo of the subunits. (iii) While the levels of translatable mRNA for SSU are compatible with the rate of SSU synthesis the relatively high LSU mRNA levels are not reflected in the rates of in-vivo LSU or RuBPCase syntheses. (iv) Gene expression is also abolished in the case of nuclear-encoded SSU if intraplastidic translation and concomitant plastidogenesis is inhibited by chloramphenicol, pointing to a plastidic factor as an indispensable prerequisite for expression of the SSU gene(s). (v) Regarding the control mechanism for SSU gene expression, three factors seem to be involved: an endogenous factor which turns on gene expression, phytochrome which modulates gene expression, and the plastidic factor which is an indispensable prerequisite for the appearance of translatable SSU mRNA.Abbreviations CAP chloramphenicol - cFR continuous farred light - LSU large subunit of RuBPCase - NADP-GPD NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) - Pfr far-red-absorbing form of phytochrome - pSSU precursor of SSU - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase  相似文献   

17.
Metabolism of 2-carboxy-D-arabinitol 1-phosphate (CA1P) is an important component in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity and whole leaf photosynthetic CO2 assimilation in many species, and functions as one mechanism for regulating Rubisco activity when photosynthesis is light-limited. Species differ in their capacity to accumulate CA1P, ranging from those which can synthesize levels of this compound approaching or in excess of the Rubisco catalytic site concentration, to those which apparently lack the capacity for CA1P synthesis. CA1P is structurally related to the six carbon transition state intermediate of the carboxylation reaction and binds tightly to the carbamylated catalytic site of Rubisco, making that site unavailable for catalysis. Under steady-state, the concentration of CA1P in the leaf is highest at low photon flux density (PFD) or in the dark. Degradation of CA1P and recovery of Rubisco activity requires light and is stimulated by increasing PFD. The initial degradation reaction is catalyzed by an enzyme located in the chloroplast stroma, CA1P phosphatase, which yields carboxyarabinitol (CA) and inorganic phosphate as its products. The pathway of CA metabolism in the plant remains to be determined. Synthesis of CA1P occurs in the dark, and in Phaseolus vulgaris this process has been shown to be stimulated by low PFD. The pathway of CA1P synthesis and its relationship to the degradative pathway remains unknown at the present time. The discovery of the existence of this previously unknown carbon pathway in photosynthesis indicates that we still have much to learn concerning the regulation of Rubisco activity and photosynthesis.Abbreviations CA 2-carboxy-D-arabinitol - CA1P 2-carboxy-D-arabinitol 1-phosphate - CABP 2-carboxy-D-arabinitol-1,5-bisphosphate (transition state analog) - PFD photon flux density - P1 inorganic phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Continuous removal of fruits from soybean plants (Glycine max [L.] Merr.) causes a redistribution of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) from the soluble to the insoluble phase of leaf extracts. The extent of this redistribution is genotype-dependent. We previously reported that insoluble Rubisco occurs in a high-molecular-mass complex together with a protein composed of 30-kDa subunits (S.J. Crafts-Brander et al., Planta, 183, 300–306). In the present study, the Rubisco Complex Protein (RCP), was isolated from the Rubisco-RCP complex by gel-filtration chromatography in 4 M urea. Under these conditions, RCP migrated with an apparent molecular mass of 120 kDa, indicating that the protein maintains a tetrameric structure even in 4 M urea. Once freed of urea, purified RCP was soluble, but formed insoluble complexes with Rubisco from soybean, tobacco and spinach when RCP and Rubisco were incubated in a ratio of 11 by weight. Purified Rubisco and RCP also associated into a high-molecular-mass complex when either component was in several-fold excess, but in this case the complex was soluble. Similarly, the amount of Rubisco sequestered as an insoluble Rubisco:RCP complex in leaf extracts of different soybean genotypes was related to the relative amounts of Rubisco and RCP present in the extracts. Thus, with both purified components and in leaf extracts, formation of an insoluble complex between Rubisco and RCP required a precise stoichiometry. Antibodies directed against purified RCP detected an accumulation of RCP in soybean leaves around the time of flowering. The RCP was also detected in petioles, stems, and pod walls of soybean, but not seeds. Fruit removal caused a marked increase in the amount of RCP in the leaves to levels as high as 15% of the total soluble protein. The accumulation of RCP in response to source:sink manipulations was similar to soybean vegetative storage proteins (VSPs). However, immunogold-localization showed that RCP was located in the cytosol of leaves, compartmentalized separate from both Rubisco and the VSPs. Thus, the physiological relevance of the specific association between RCP and Rubisco is obscure.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - RCP rubisco complex protein - VSPs vegetative storage proteins Kentucky Agricultural Experiment Station Journal Article No. 93-3-162We wish to acknowledge L.F. Staples and J.C. Anderson for their expert technical assistance. Electron microscopy was performed by the Nano-Probe Laboratory, Lucille Parker Markey Cancer Center, University of Kentucky. We thank Dr. K.C. Vaughn, USDA-ARS, for providing guidance pertaining to immunogold-localization procedures.  相似文献   

19.
Klaus J. Lendzian 《Planta》1978,143(3):291-296
In a preparation of soluble components from isolated spinach (Spinecia oleracea L.) chloroplasts, the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is strongly increased by 6-phosphogluconate or by NADPH at pH 8.0. When the thylakoid system is added to these soluble components (reconstituted chloroplast system) plus ferredoxin, the carboxylase is even more strongly activated in the light. This light activation appears to be due to reduction of endogenous NADP+ by electrons from the light reactions transferred via ferredoxin, since NADPH alone can activate the purified enzyme in the dark while reduced ferredoxin does not. The regulatory properties of the enzyme in the reconstituted chloroplast system are compared with those of the isolated enzyme, and their possible physiologic significance is discussed.Abbreviations Fd ferredoxin - PPC pentose phosphate cycle - 6-PGluA 6-phosphogluconate - Rib-5-P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号