首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hamada S  Ito H  Ueno H  Takeda Y  Matsui H 《Phytochemistry》2007,68(10):1367-1375
Starch-branching enzymes (SBEs) play a pivotal role in determining the fine structure of starch by catalyzing the syntheses of alpha-1,6-branch points. They are the members of the alpha-amylase family and have four conserved regions in a central (beta/alpha)8 barrel, including the catalytic sites. Although the role of the catalytic barrel domain of an SBE is known, that of its N- and C-terminal regions remain unclear. We have previously shown that the C-terminal regions of the two SBE isozymes (designated as PvSBE1 and PvSBE2) from kidney bean (Phaseolus vulgaris L.) have different roles in branching enzyme activity. To understand the contribution of the N-terminal region to catalysis, six chimeric enzymes were constructed between PvSBE1 and PvSBE2. Only one enzyme (1Na/2Nb)-II, in which a portion of the N-terminal region of PvSBE2 was substituted by the corresponding region of PvSBE1, retained 6% of the PvSBE2 activity. The N-terminal truncated form (DeltaN46-PvSBE2), lacking 46 N-terminal residues of PvSBE2, lost enzyme activity and stability to proteolysis. To investigate the possible function of this region, three residues (Asp-15, His-24, and Arg-28) among these 46 residues were subjected to site-directed mutagenesis. The purified mutant enzymes showed nearly the same K(m) values as PvSBE2 but had lower V(max) values and heat stabilities than PvSBE2. These results suggest that the N-terminal region of the kidney bean SBE is essential for maximum enzyme activity and thermostability.  相似文献   

2.
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform 13C and 15N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the β-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.  相似文献   

3.
4.
p47 is the major protein identified in complex with the cytosolic AAA ATPase p97. It functions as an essential cofactor of p97-regulated membrane fusion, which has been suggested to disassemble t-t-SNARE complexes and prepare them for further rounds of membrane fusion. Here, we report the high-resolution NMR structure of the C-terminal domain from p47. It comprises a UBX domain and a 13 residue long structured N-terminal extension. The UBX domain adopts a characteristic ubiquitin fold with a betabetaalphabetabetaalphabeta secondary structure arrangement. Three hydrophobic residues from the N-terminal extension pack closely against a cleft in the UBX domain. We also identify, for the first time, the p97 interaction surface using NMR chemical shift perturbation studies.  相似文献   

5.
The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the μ-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the μ-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the μ-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.  相似文献   

6.
T H Bestor 《The EMBO journal》1992,11(7):2611-2617
Mammalian DNA (cytosine-5) methyltransferase contains a C-terminal domain that is closely related to bacterial cytosine-5 restriction methyltransferase. This methyltransferase domain is linked to a large N-terminal domain. It is shown here that the N-terminal domain contains a Zn binding site and that the N- and C-terminal domains can be separated by cleavage with trypsin or Staphylococcus aureus protease V8; the protease V8 cleavage site was determined by Edman degradation to lie 10 residues C-terminal of the run of alternating lysyl and glycyl residues which joins the two domains and six residues N-terminal of the first sequence motif conserved between the mammalian and bacterial cytosine methyltransferases. While the intact enzyme had little activity on unmethylated DNA substrates, cleavage between the domains caused a large stimulation of the initial velocity of methylation of unmethylated DNA without substantial change in the rate of methylation of hemimethylated DNA. These findings indicate that the N-terminal domain of DNA methyltransferase ensures the clonal propagation of methylation patterns through inhibition of the de novo activity of the C-terminal domain. Mammalian DNA methyltransferase is likely to have arisen via fusion of a prokaryotic-like restriction methyltransferase and an unrelated DNA binding protein. Stimulation of the de novo activity of DNA methyltransferase by proteolytic cleavage in vivo may contribute to the process of ectopic methylation observed in the DNA of aging animals, tumors and in lines of cultured cells.  相似文献   

7.
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.  相似文献   

8.
The periplasmic C-terminal domain of the Escherichia coli DsbD protein (cDsbD) has a thioredoxin fold. The two cysteine residues in the CXXC motif serve as the reductant for the disulfide bond of the N-terminal domain which can in turn act as a reductant for various periplasmic partners. The resulting disulfide bond in cDsbD is reduced via an unknown mechanism by the transmembrane helical domain of the protein. We show by NMR analysis of (13)C, (15)N-labelled cDsbD that the protein is rigid, is stable to extremes of pH and undergoes only localized conformational changes in the vicinity of the CXXC motif, and in adjacent regions of secondary structure, upon undergoing the reduced/oxidized transition. pK(a) values have been determined, using 2D NMR, for the N-terminal cysteine of the CXXC motif, Cys461, as well as for other active-site residues. It is demonstrated using site-directed mutagenesis that the negative charges of the side-chains of Asp455 and Glu468 in the active site contribute to the unusually high pK(a) value, 10.5, of Cys461. This value is higher than expected from knowledge of the reduction potential of cDsbD. In a double mutant of cDsbD, D455N/E468Q, the pK(a) value of Cys461 is lowered to 8.6, a value close to that expected for an unperturbed cysteine residue. The pK(a) value of the second cysteine in wild-type cDsbD, Cys464, is significantly higher than the maximum pH value that was studied (pH 12.2).  相似文献   

9.
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~ 20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular 13C-13C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.  相似文献   

10.
Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.  相似文献   

11.
DNA ligases join single-strand breaks in double-stranded DNA, and are essential to maintain genome integrity in DNA metabolism. Here, we report the 1.8 A resolution structure of Pyrococcus furiosus DNA ligase (PfuLig), which represents the first full-length atomic view of an ATP-dependent eukaryotic-type DNA ligase. The enzyme comprises the N-terminal DNA-binding domain, the middle adenylation domain, and the C-terminal OB-fold domain. The architecture of each domain resembles those of human DNA ligase I, but the domain arrangements differ strikingly between the two enzymes. The closed conformation of the two "catalytic core" domains at the carboxyl terminus in PfuLig creates a small compartment, which holds a non-covalently bound AMP molecule. This domain rearrangement results from the "domain-connecting" role of the helical extension conserved at the C termini in archaeal and eukaryotic DNA ligases. The DNA substrate in the human open-ligase is replaced by motif VI in the Pfu closed-ligase. Both the shapes and electrostatic distributions are similar between motif VI and the DNA substrate, suggesting that motif VI in the closed state mimics the incoming substrate DNA. Two basic residues (R531 and K534) in motif VI reside within the active site pocket and interact with the phosphate group of the bound AMP. The crystallographic and functional analyses of mutant enzymes revealed that these two residues within the RxDK sequence play essential and complementary roles in ATP processing. This sequence is also conserved exclusively among the covalent nucleotidyltransferases, even including mRNA-capping enzymes with similar helical extensions at the C termini.  相似文献   

12.
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.  相似文献   

13.
Sulfurtransferase are enzymes involved in the formation, conversion and transport of compounds containing sulfane-sulfur atoms. Although the three-dimensional structure of the rhodanese from the nitrogen-fixing bacterium Azotobacter vinelandii is known, the role of its two domains in the protein conformational stability is still obscure. We have evaluated the susceptibility to proteolytic degradation of the two domains of the enzyme. The two domains show different resistance to the endoproteinases and, in particular, the N-terminal domain shows to be more stable to digestion during time than the C-terminal one. Cloning and overexpression of the N-terminal domain of the protein was performed to better understand its functional and structural role. The recombinant N-terminal domain of rhodanese A. vinelandii is soluble in water solution and the spectroscopic studies by circular dichroism and heteronuclear NMR spectroscopy indicate a stable fold of the protein with the expected alpha/beta topology. The results indicate that this N-terminal domain has already got all the elements necessary for an C-terminal domain independent folding. Its solution structure by NMR, actually under course, will be a valid contribution to understand the role of this domain in the folding process of the sulfurtransferase.  相似文献   

14.
In Escherichia coli, RlmB catalyzes the methylation of guanosine 2251, a modification conserved in the peptidyltransferase domain of 23S rRNA. The crystal structure of this 2'O-methyltransferase has been determined at 2.5 A resolution. RlmB consists of an N-terminal domain connected by a flexible extended linker to a catalytic C-terminal domain and forms a dimer in solution. The C-terminal domain displays a divergent methyltransferase fold with a unique knotted region, and lacks the classic AdoMet binding site features. The N-terminal domain is similar to ribosomal proteins L7 and L30, suggesting a role in 23S rRNA recognition. The conserved residues in this novel family of 2'O-methyltransferases cluster in the knotted region, suggesting the location of the catalytic and AdoMet binding sites.  相似文献   

15.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

16.
Human APOBEC3G (A3G) belongs to a family of polynucleotide cytidine deaminases. This family includes APOBEC1 and AID, which edit APOB mRNA and antibody gene DNA, respectively. A3G deaminates cytidines to uridines in single-strand DNA and inhibits the replication of human immunodeficiency virus-1, other retroviruses, and retrotransposons. Although the mechanism of A3G-catalyzed DNA deamination has been investigated genetically and biochemically, atomic details are just starting to emerge. Here, we compare the DNA cytidine deaminase activities and NMR structures of two A3G catalytic domain constructs. The longer A3G191-384 protein is considerably more active than the shorter A3G198-384 variant. The longer structure has an α1-helix (residues 201-206) that was not apparent in the shorter protein, and it contributes to catalytic activity through interactions with hydrophobic core structures (β1, β3, α5, and α6). Both A3G catalytic domain solution structures have a discontinuous β2 region that is clearly different from the continuous β2 strand of another family member, APOBEC2. In addition, the longer A3G191-384 structure revealed part of the N-terminal pseudo-catalytic domain, including the interdomain linker and some of the last α-helix. These structured residues (residues 191-196) enabled a novel full-length A3G model by providing physical overlap between the N-terminal pseudo-catalytic domain and the new C-terminal catalytic domain structure. Contrary to predictions, this structurally constrained model suggested that the two domains are tethered by structured residues and that the N- and C-terminal β2 regions are too distant from each other to participate in this interaction.  相似文献   

17.
Fas apoptosis inhibitory molecule (FAIM) is a soluble cytosolic protein inhibitor of programmed cell death and is found in organisms throughout the animal kingdom. A short isoform of FAIM is expressed in all tissue types, while an alternatively spliced long isoform is specifically expressed in the brain. Here, the short isoform is shown to consist of two independently folding domains in contact with each other. The NMR solution structure of the C-terminal domain of murine FAIM is solved in isolation and revealed to be a novel protein fold, a noninterleaved seven-stranded β-sandwich. The structure and sequence reveal several residues that are likely to be involved in functionally significant interactions with the N-terminal domain or other binding partners. Chemical shift perturbation is used to elucidate contacts made between the N-terminal domain and the C-terminal domain.  相似文献   

18.
Folding and insertion of integral β-barrel proteins in the outer membrane (OM) is an essential process for Gram-negative bacteria that requires the β-barrel assembly machinery (BAM). Efficient OM protein (OMP) folding and insertion appears to require a consensus C-terminal signal in OMPs characterized by terminal F or W residues. The BAM complex is embedded in the OM and, in Escherichia coli, consists of the β-barrel BamA and four lipoproteins BamBCDE. BamA and BamD are broadly distributed across all species of Gram-negative bacteria, whereas the other components are present in only a subset of species. BamA and BamD are also essential for viability, suggesting that these two proteins constitute the functional core of the bacterial BAM complex. Here, we present the crystal structure of BamD from the thermophilic bacteria Rhodothermus marinus refined to 2.15 Å resolution. The protein contains five tetratricopeptide repeats (TPRs) organized into two offset tandems, each capped by a terminal helix. The N-terminal domain contains three TPRs and displays remarkable structural similarity with proteins that recognize targeting signals in extended conformations. The C-terminal domain harbors the remaining two TPRs and previously described mutations that impair binding to other BAM components map to this domain. Therefore, the structure suggests a model where the C-terminal domain provides a scaffold for interaction with BAM components, while the N-terminal domain participates in interaction with the substrates, either recognizing the C-terminal consensus sequence or binding unfolded OMP intermediates.  相似文献   

19.
To establish an infection, Yersinia pseudotuberculosis utilizes a plasmid-encoded type III secretion machine that permits the translocation of several anti-host factors into the cytosol of target eukaryotic cells. Secreted YopD is essential for this process. Pre-secretory stabilization of YopD is mediated by an interaction with its cognate chaperone, LcrH. YopD possesses LcrH binding domains located in the N-terminus and in a predicted amphipathic domain located near the C-terminus. This latter domain is also critical for Yersinia virulence. In this study, we designed synthetic peptides encompassing the C-terminal amphipathic domain of YopD. A solution structure of YopD278-300, a peptide that strongly interacted with LcrH, was obtained by NMR methods. The structure is composed of a well-defined amphipathic alpha helix ranging from Phe280 to Tyr291, followed by a type I beta turn between residues Val292 and His295. The C-terminal truncated peptides, YopD278-292 and YopD271-292, lacked helical structure, implicating the beta turn in helix stability. An interaction between YopD278-300 and its cognate chaperone, LcrH, was observed by NMR through line-broadening effects and chemical shift differences between the free peptide and the peptide-LcrH complex. These effects were not observed for the unstructured peptide, YopD278-292, which confirms that the alpha helical structure of the YopD amphipathic domain is a critical binding region of LcrH.  相似文献   

20.
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-l-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-l-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号