首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.  相似文献   

2.
3.
Neu differentiation factor (NDF)-induced signaling involves the activation of members of the ErbB family of receptor tyrosine kinases. Although ectopic expression of recombinant ErbB receptors has yielded valuable insight into their signaling properties, the biological function and in vivo interplay of these receptors are still poorly understood. We addressed this issue by studying NDF signaling in various human cell lines expressing moderate levels of all known ErbB receptors. NDF-induced phosphorylation of ErbB-2 and ErbB-3 was found in the breast epithelial cell line MCF10A, the breast tumor cell lines T47D and MCF7, and the ovarian tumor cell line OVCAR3. Despite similar expression levels, NDF-induced phosphorylation of ErbB-4 was cell specific and only detected in T47D and OVCAR3 cells. Blocking cell surface expression of ErbB-2 by intracellular expression of a single-chain antibody revealed that in these two cell lines, ErbB-2 significantly enhanced phosphorylation of ErbB-4. Efficient NDF-induced phosphorylation of ErbB-3 was strictly ErbB-2 dependent in the breast tumor cell lines T47D and MCF7, while it was largely ErbB-2 independent in MCF10A and OVCAR3 cells. Consequently, NDF-stimulated intracellular signaling and induction of a biological response displayed a cell-specific requirement for ErbB-2. Thus, while ErbB-2 cooperates with NDF receptors in the breast tumor cell lines, ErbB-2 independent mechanisms seem to prevail in other cellular contexts.  相似文献   

4.
Ebp1, an ErbB-3 binding protein, inhibits the proliferation and induces the differentiation of human breast cancer cells. The mechanisms of these effects are unknown. Rb, the product of the retinoblastoma gene, is an important modulator of cell cycle progression and cellular differentiation. We report that Rb is a binding target for Ebp1. Ebp1 was localized to both the nucleus and the cytoplasm of logarithmically growing AU565 breast cancer cells and HeLa cells as determined by confocal immunofluorescent microscopy. Ebp1 was present in Rb immunoprecipitates derived from AU565 breast cancer cells. GST-Rb also bound endogenous Ebp1. Using GST-Ebp1 constructs, we determined that the 72 C-terminal amino acids of Ebp1 were sufficient to bind Rb. Dephosphorylation of Ebp1 enhanced the interaction of Ebp1 with Rb. The overexpression of Ebp1 in MCF-7 and AU565 (Rb(+)) cells inhibited the activity of the E2F1 regulated cyclin-E promoter. Ebp1 bound E2F1 indirectly via Rb in lysates of MCF-7 cells. The interaction of Ebp1 with Rb may prove to be an important mechanism of Ebp1 induced changes in cell proliferation and differentiation.  相似文献   

5.
6.
Tumor necrosis factor (TNF)-α has a broad range of biological activities, which depend heavily on cell type and physiological condition. In a panel of human tumor cell lines we analyzed expression of the receptor tyrosine kinases EGFR, ErbB2 and ErbB3, and the response to TNF-α. Among the cell lines tested those resistant to TNF-α were found to express high levels of either EGFR, or ErbB2 and ErbB3. In TNF-sensitive breast and cervical carcinoma cells activation of EGFR or ErbB2 by the exogenous growth factors EGF and heregulin β1 resulted in a significant increase in the number of cells surviving TNF-α treatment. In contrast, inhibition of EGFR activation in TNF-resistant breast carcinoma cells by the novel antagonistic anti-EGFR antibody 14E1 sensitized the cells to the cytotoxic effects of TNF-α. A bacterially expressed fusion protein consisting of a 14E1 single-chain (sc) Fv antibody fragment linked to human TNF-α retained TNF-α activity. This scFv(14E1)-TNF-α molecule localized specifically to EGFR on the surface of tumor cells and activated the NF-κB pathway in co-cultured T cells, as demonstrated by electrophoretic mobility shift assays. Received: 6 May 1998 / Accepted: 16 July 1998  相似文献   

7.
8.
Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.  相似文献   

9.
10.
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.  相似文献   

11.
Based on immune reactivity in response to a whole-cell colon tumor vaccine and using serological identification of Ags by recombinant cDNA expression cloning, we here describe the molecular and functional identification of a novel human tumor Ag. By screening a cDNA expression library derived from the coloncarcinoma cell line HT-29 with pooled colorectal cancer patients' sera, 26 clones reactive with IgG Abs could be identified. Characterization of these cDNA clones by sequence analysis and alignment, and detailed serological analysis revealed cancer-related immunoreactivity for the ErbB-3-binding protein-1 (Ebp1). Immunohistochemical staining of colorectal tumors and neighboring normal colon tissue indicated the observed cancer-related immunogenicity of Ebp1 to be related to overexpression. Via reverse immunology, five potential HLA-A2-restricted T cell epitopes were identified, of which two (Ebp1(45-54) and Ebp1(59-67)) bound HLA-A2 with intermediate and high affinity, respectively. Analysis of their immunogenicity in vitro indicated that only the high-affinity Ebp1(59) epitope gave rise to CD8(+) T cells capable of recognizing both exogenously loaded Ebp1 peptide and endogenously expressed Ebp1 on target cells. In addition, in vivo CD8(+) T cell responsiveness against the Ebp1(59) epitope could be detected in two of nine and three of six cancer patients PBMC and tumor draining lymph nodes, respectively, but not in nine of nine healthy donors tested. These data confirm that Ebp1 is an immunogenic protein, capable of eliciting CD8-mediated responses in vivo and in vitro, providing a rationale for further exploration of Ebp1 as a possible target for anticancer immunotherapy.  相似文献   

12.
Nek2A (NIMA-related kinases 2A) has been known as an important centrosome regulatory factor. The aim of this study was to investigate the expression of Nek2A and the role it played in different stages of breast cancer. We detected the expression of Nek2A in both mRNA and protein levels in MCF10 cell lines including MCF-10A, MCF-10DCIS.com, MCF-10CA1a and in human breast samples which contained normal breast tissue (NBT), breast ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Our study revealed that the mRNA and protein expression of Nek2A were significantly up-regulated in MCF-10DCIS.com and MCF-10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). Our study also presented a correlation between Nek2A mRNA expression and some clinic pathological factors. We found that Nek2A mRNA expression was associated with molecular subtypes, ER, PR and Ki-67 immunoreactivity (P<0.05) in DCIS and associated with histological grade, lymph node metastasis, molecular subtypes, c-erbB-2, and Ki-67 expression (P<0.05) in IDC. In addition, we observed that ectopic expression of Nek2A in "normal" immortalized MCF-10A breast epithelial cell resulted in increased Nek2A which lead to abnormal centrosomes. Furthermore, knockdown of Nek2A in MCF-10DCIS.com could remarkably inhibit cell proliferation and induce cell cycle arrest in MCF-10DCIS.com cell line. These data suggested that Nek2A might bear a close relationship with development and progression of breast carcinoma, and highlighted its role as a novel potential biomarker for diagnosis and a possible therapeutic target for human breast cancer especially for DCIS.  相似文献   

13.
ErbB-2 becomes rapidly phosphorylated and activated following treatment of many cell lines with epidermal growth factor (EGF) or Neu differentiation factor (NDF). However, these factors do not directly bind ErbB-2, and its activation is likely to be mediated via transmodulation by other members of the type I/EGF receptor (EGFR)-related family of receptor tyrosine kinases. The precise role of ErbB-2 in the transduction of the signals elicited by EGF and NDF is unclear. We have used a novel approach to study the role of ErbB-2 in signaling through this family of receptors. An ErbB-2-specific single-chain antibody, designed to prevent transit through the endoplasmic reticulum and cell surface localization of ErbB-2, has been expressed in T47D mammary carcinoma cells, which express all four known members of the EGFR family. We show that cell surface expression of ErbB-2 was selectively suppressed in these cells and that the activation of the mitogen-activated protein kinase pathway and p70/p85S6K, induction of c-fos expression, and stimulation of growth by NDF were dramatically impaired. Activation of mitogen-activated protein kinase and p70/p85S6K and induction of c-fos expression by EGF were also significantly reduced. We conclude that in T47D cells, ErbB-2 is a major NDF signal transducer and a potentiator of the EGF signal. Thus, our observations demonstrate that ErbB-2 plays a central role in the type I/EGFR-related family of receptors and that receptor transmodulation represents a crucial step in growth factor signaling.  相似文献   

14.
15.
The present study addresses the capacity of heregulin (HRG), a ligand of type I receptor tyrosine kinases, to transactivate the progesterone receptor (PR). For this purpose, we studied, on the one hand, an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in female BALB/c mice and, on the other hand, the human breast cancer cell line T47D. HRG was able to exquisitely regulate biochemical attributes of PR in a way that mimicked PR activation by progestins. Thus, HRG treatment of primary cultures of epithelial cells of the progestin-dependent C4HD murine mammary tumor line and of T47D cells induced a decrease of protein levels of PRA and -B isoforms and the downregulation of progesterone-binding sites. HRG also promoted a significant increase in the percentage of PR localized in the nucleus in both cell types. DNA mobility shift assay revealed that HRG was able to induce PR binding to a progesterone response element (PRE) in C4HD and T47D cells. Transient transfections of C4HD and T47D cells with a plasmid containing a PRE upstream of a chloramphenicol acetyltransferase (CAT) gene demonstrated that HRG promoted a significant increase in CAT activity. In order to assess the molecular mechanisms underlying PR transactivation by HRG, we blocked ErbB-2 expression in C4HD and T47D cells by using antisense oligodeoxynucleotides to ErbB-2 mRNA, which resulted in the abolishment of HRG's capacity to induce PR binding to a PRE, as well as CAT activity in the transient-transfection assays. Although the inhibition of HRG binding to ErbB-3 by an anti-ErbB-3 monoclonal antibody suppressed HRG-induced PR activation, the abolishment of HRG binding to ErbB-4 had no effect on HRG activation of PR. To investigate the role of mitogen-activated protein kinases (MAPKs), we used the selective MEK1/MAPK inhibitor PD98059. Blockage of MAPK activation resulted in complete abrogation of HRG's capacity to induce PR binding to a PRE, as well as CAT activity. Finally, we demonstrate here for the first time that HRG-activated MAPK can phosphorylate both human and mouse PR in vitro.  相似文献   

16.
17.
18.
We identified the IIIb C2 epithelial cell-specific splice variant of fibroblast growth factor receptor 2 (FGFR2 IIIb C2) receptor tyrosine kinase in a screen for activated oncogenes expressed in T-47D human breast carcinoma cells. We found FGFR2 IIIb C2 expression in breast carcinoma cell lines and, additionally, expression of the mesenchymal-specific FGFR2 IIIc splice variant in invasive breast carcinomas. FGFR2 IIIc expression was associated with loss of epithelial markers and gain of mesenchymal markers. Although FGFR2 IIIb is expressed in epithelial cells, previous studies on FGFR2 IIIb transformation have focused on NIH 3T3 fibroblasts. Therefore, we compared the transforming activities of FGFR2 IIIb C2 in RIE-1 intestinal cells and several mammary epithelial cells. FGFR2 IIIb C2 caused growth transformation of epithelial cells but morphologic transformation of only NIH 3T3 cells. FGFR2 IIIb C2-transformed NIH 3T3, but not RIE-1 cells, showed persistent activation of Ras and increased cyclin D1 protein expression. NIH 3T3 but not RIE-1 cells express keratinocyte growth factor, a ligand for FGFR2 IIIb C2. Ectopic treatment with keratinocyte growth factor caused FGFR2 IIIb C2-dependent morphologic transformation of RIE-1 cells, as well as cyclin D1 up-regulation, indicating that both ligand-independent and stromal cell-derived, ligand-dependent mechanisms contribute to RIE-1 cell transformation. Our results support cell context distinct mechanisms of FGFR2 IIIb C2 transformation.  相似文献   

19.
Increased tyrosine phosphorylation has been correlated with human cancer, including breast cancer. In general, the activation of tyrosine kinases (TKs) can be antagonized by the action of protein-tyrosine phosphatases (PTPs). However, in some cases PTPs can potentiate the activation of TKs. In this study, we have investigated the functional role of PTPε in human breast cancer cell lines. We found the up-regulation and activation of receptor PTPε (RPTPε) in MCF-7 cells and MDA-MB-231 upon PMA, FGF, and serum stimulation, which depended on EGFR and ERK1/2 activity. Diminishing the expression of PTPε in human breast cancer cells abolished ERK1/2 and AKT activation, and decreased the viability and anchorage-independent growth of the cells. Conversely, stable MCF-7 cell lines expressing inducible high levels of ectopic PTPε displayed higher activation of ERK1/2 and anchorage-independent growth. Our results demonstrate that expression of PTPε is up-regulated and activated in breast cancer cell lines, through EGFR, by sustained activation of the ERK1/2 pathway, generating a positive feedback regulatory loop required for survival of human breast cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号