首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
The protein tyrosine phosphatase-1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) have been implicated in down-regulation of tyrosine kinase receptors, conferring anti-oncogenic functions to these PTPases. However, recent work has shown that PTP1B is positively implicated in oncogenic properties of breast cancer cells by regulating the ERK pathway. Here, we studied the function of PTP1B and TC-PTP in IGF-2-induced growth, survival and migration of MCF-7 breast cancer cells. Using siRNA, we showed that reduction in the expression of these PTPases decreased cell growth and ERK phosphorylation. Reduction in the expression of these PTPases did not impair IGF-2 effects on cell survival to acute treatment with 4-OH Tamoxifen. In contrast, IGF-2-induced MCF-7 cell migration was markedly impaired by reduction of PTP1B or TC-PTP expression, independently of the ERK pathway. This novel finding reinforces the potential role of these PTPases as therapeutic targets for treatment of breast cancer.  相似文献   

3.
Protein tyrosine phosphorylation is one of the major post-translational modifications in eukaryotic cells and represents a critical regulatory mechanism of a wide variety of signaling pathways. Aberrant protein tyrosine phosphorylation has been linked to various diseases, including metabolic disorders and cancer. Few years ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors, able to block the signals emanating from receptor tyrosine kinases. However, recent evidence demonstrates that misregulation of PTPs activity plays a critical role in cancer development and progression. Here, we will focus on PTP1B, an enzyme that has been linked to the development of type 2 diabetes and obesity through the regulation of insulin and leptin signaling, and with a promoting role in the development of different types of cancer through the activation of several pro-survival signaling pathways. In this review, we discuss the molecular aspects that support the crucial role of PTP1B in different cellular processes underlying diabetes, obesity and cancer progression, and its visualization as a promising therapeutic target.  相似文献   

4.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

5.
Binding of urokinase-type plasminogen activator (uPA) to its receptor, uPAR, in estrogen receptor-α (ERα) expressing breast cancer cells, transiently activates ERK downstream of FAK, Src family kinases, and H-Ras. Herein, we show that when uPAR is over-expressed, in two separate ERα-positive breast cancer cell lines, ERK activation occurs autonomously of uPA and is sustained. Autonomous ERK activation by uPAR requires H-Ras and Rac1. A mutated form of uPAR, which does not bind vitronectin (uPAR-W32A), failed to induce autonomous ERK activation. Expression of human uPAR or mouse uPAR but not uPAR-W32A in MCF-7 cells provided a selection advantage when these cells were deprived of estrogen in cell culture for two weeks. Similarly, MCF-7 cells that express mouse uPAR formed xenografts in SCID mice that survived and increased in volume in the absence of estrogen supplementation, probably reflecting the pro-survival activity of phospho-ERK. Autonomous uPAR signaling to ERK was sensitive to the EGFR tyrosine kinase inhibitors, Erlotinib and Gefitinib. The transition in uPAR signaling from uPA-dependent and transient to autonomous and sustained is reminiscent of the transformation in ErbB2/HER2 signaling observed when this gene is amplified in breast cancer. uPAR over-expression may provide a pathway for escape of breast cancer cells from ERα-targeting therapeutics.  相似文献   

6.
The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.  相似文献   

7.
Ovarian cancer, which is the leading cause of death from gynecological malignancies, is a heterogeneous disease known to be associated with disruption of multiple signaling pathways. Nevertheless, little is known regarding the role of protein phosphatases in the signaling events that underlie the disease; such knowledge will be essential to gain a complete understanding of the etiology of the disease and how to treat it. We have demonstrated that protein-tyrosine phosphatase 1B (PTP1B) was underexpressed in a panel of ovarian carcinoma-derived cell lines, compared with immortalized human ovarian surface epithelial cell lines. Stable restoration of PTP1B in those cancer cell lines substantially decreased cell migration and invasion, as well as proliferation and anchorage-independent survival. Mechanistically, the pro-survival IGF-1R signaling pathway was attenuated upon ectopic expression of PTP1B. This was due to dephosphorylation by PTP1B of IGF-1R β-subunit and BRK/PTK6, an SRC-like protein-tyrosine kinase that physically and functionally interacts with the IGF-1R β-subunit. Restoration of PTP1B expression led to enhanced activation of BAD, one of the major pro-death members of the BCL-2 family, which triggered cell death through apoptosis. Conversely, inhibition of PTP1B with a small molecular inhibitor, MSI-1436, increased proliferation and migration of immortalized HOSE cell lines. These data reveal an important role for PTP1B as a negative regulator of BRK and IGF-1Rβ signaling in ovarian cancer cells.  相似文献   

8.
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.  相似文献   

9.
The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy-3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-κB activation in TPA-treated MCF-7 cells. However, BVT948 didn’t block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9. [BMB Reports 2013; 46(11): 533-538]  相似文献   

10.
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.  相似文献   

11.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.  相似文献   

12.
The Epidermal Growth Factor (EGF) Receptor (EGFR) plays an important role in the growth and progression of breast cancer. Overexpression of EGFR or the high activity of EGFR signal pathway has been related with increases in cell proliferation and a poor prognosis in patients with breast cancer. Several human breast cancer cell lines depend on estrogen for their proliferation. EGF may bypass the requirement of estrogen for the proliferation of breast cancer cells. To evaluate this hypothesis, MCF-7 breast cancer cells were stimulated with EGF and the effects on cell proliferation, signal pathways, and cell cycle progression were determined. The results demonstrate that EGF stimulation in the absence of others growth factors induced a modest effect on cell proliferation and the induction of a cellular arrest in the G1 phase of the cell cycle. Although phosphorylation of AKT and ERK proteins were detected, this phosphorylation was insufficient to support of cell cycle progression. Cellular arrest in G1 phase was accompanied by an increase in p21CIP1 protein, down regulation of the BCL-2 protein, induction of caspase-8, and ARHI/NOEY2 an imprinted tumor suppressor gene. These results indicate that EGFR activation by itself is not sufficient for the proliferation of breast cancer cells and suggest the existence of a mechanism that induces apoptosis upon EGFR activation.  相似文献   

13.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

14.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

15.
16.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with alpha5beta1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

17.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

18.
Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation.  相似文献   

19.
The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu(+)/−/CDCP1+ breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell–substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu+, but not HER-2/neu(+)/− cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.  相似文献   

20.
The use of platinum complexes for the therapy of breast cancer is an emerging new treatment modality. To gain insight into the mechanisms underlying cisplatin resistance in breast cancer, we used estrogen receptor-positive MCF-7 cells as a model system. We generated cisplatin-resistant MCF-7 cells and determined the functional status of epidermal growth factor receptor (EGFR), MAPK, and AKT signaling pathways by phosphoreceptor tyrosine kinase and phospho-MAPK arrays. The cisplatin-resistant MCF-7 cells are characterized by increased EGFR phosphorylation, high levels of AKT1 kinase activity, and ERK1 phosphorylation. In contrast, the JNK and p38 MAPK modules of the MAPK signaling pathway were inactive. These conditions were associated with inactivation of the p53 pathway and increased BCL-2 expression. We investigated the expression of genes encoding the ligands for the ERBB signaling cascade and found a selective up-regulation of amphiregulin expression, which occurred at later stages of cisplatin resistance development. Amphiregulin is a specific ligand of the EGFR (ERBB1) and a potent mitogen for epithelial cells. After exposure to cisplatin, the resistant MCF-7 cells secreted amphiregulin protein over extended periods of time, and knockdown of amphiregulin expression by specific short interfering RNA resulted in a nearly complete reversion of the resistant phenotype. To demonstrate the generality and importance of our findings, we examined amphiregulin expression and cisplatin resistance in a variety of human breast cancer cell lines and found a highly significant correlation. In contrast, amphiregulin levels did not significantly correlate with cisplatin resistance in a panel of lung cancer cell lines. We have thus identified a novel function of amphiregulin for cisplatin resistance in human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号