首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ultrastructure of the vegetative cell ofBrassica napus tricellular pollen grains, just before anthesis with standard chemical fixation, is reported. The vegetative cell may be regarded as a highly differentiated and metabolically active fat-storage cell. It contains many mitochondria with a well developed internal membrane system, starchless plastids, microbodies, lipid bodies, dictyosomes and numerous vesicles thought to originate from the dictysomes. Rough endoplasmic reticulum organized in stacks of cisternae is also spatially associated with certain organelles, mainly lipid bodies, microbodies and plastids. There are also randomly distributed polyribosome areas. The microbodies are mainly polymorphic in shape and are often observed in contact with lipid bodies. The above spatial relationship implies that the microbodies may have a glyoxysomal function. In the late period of vegetative cell maturation, the microbodies are probably involved in the process of glyconeogenesis in which the conversion of lipid reserves to sugar takes place.Abbreviations VC vegetative cell - VN vegetative nucleus - SC sperm cell - M mitochondria - MB microbodies - L lipid body - P plastid - D dictyosomes  相似文献   

2.
The aim of the work was to report morphological changes whichoccur in the shoot apex during the morphogenetic switch to floweringin the model long day (LD) plant, Sinapis alba. During the floraltransition induced by 1 LD the growth rate of all componentsof the shoot apex is modified profoundly. The earliest changes,detected at 24 h after start of LD, include a decrease in plastochronduration and an increase of growth of leaf primordia. One daylater, the meristem dome starts to increase in volume, apicalinternodes have an increased height and there is a precociousoutgrowth of axillary meristems. All these changes precede initiationof flower primordia, which starts at about 60 h after the startof LD. Later changes include meristem doming, a decrease inthe plastochron ratio and a shift to a more complex phyllotaxis.All the changes, except the decreased plastochron ratio, arecharacteristics of an apex with an increased tempo of growth.The stimulation of longitudinal growth (height of apical intemodes)is more marked and occurs earlier than the reduction of radialgrowth (plastochron ratio). Key words: Axillary meristem, internode growth, leaf growth, plastochron ratio, plastochron duration  相似文献   

3.
We determined the number of mitochondria, microbodies, and plastids in dark-grown oat (Avena sativa) coleoptiles following incubation in indoleacetic acid (IAA) for a period of 60 minutes at 6-minute intervals. In the apical outer epidermis of coleoptiles, the mitochondria increased from 31.4 to 35 per cell section with a 6-minute incubation in IAA, and this trend persisted over the 60-minute incubation. Neither the microbodies, plastids, nor the dicytosomes (Gawlik and Miller 1974 Plant Physiol 54:217-221) responded to the hormone. The apical parenchyma showed no change in quantity of any of the organelles including the dictyosomes during IAA incubation. The quick response of mitochondria in the coleoptile tip could be interpreted as an association of this organelle with hormone transport, growth, or perhaps with gravity perception. In the subapical expansion region, IAA caused significant reductions of mitochondria, microbodies, and dictyosomes in the outer epidermis compared to the control, the timing of which preceded the IAA-induced elongation and of geotropism. The fast response of organelles in the various cells is probably a change in organelle volume rather than number. That microbodies show a response to the plant hormone in the permanently achlorophyllous epidermis indicates that these organelles, in addition to their peroxisomal functions in green leaves, also may have a growth regulation function. IAA treatment was without effect on the quantity of the various types of plastids (including the amyloplasts) in the different oat coleoptile cells.  相似文献   

4.
Root Cap Structure in Isoetes macrospora Dur   总被引:1,自引:0,他引:1  
Root meristem cells of Isoetes macrosporausually have one plastidwhich is associated with the prominent nucleus, numerous ribosomesand mitochondria, and small vacuoles. During mitosis each plastidappears to replicate so that each daughter cell contains oneplastid. The cell walls of the meristem cells are traversedby numerous plasmodesmata. Central cells of the root cap lackdistally displaced plastids but have one or more amyloplastsassociated with the nucleus. These cells also contain largeprotein deposits. Peripheral root cap cells are characterizedby being vacuolated, and by possessing a few dictyosomes andprotein deposits. They appear to be sloughed infrequently. Isoetes macrospora Dur, root cap, protein bodies, ultrastructure  相似文献   

5.
In the apex of dormant buds of Salk a histological zonation comparable to that found in growing buds was observed. However, significant changes in relative volumes of cell components between dormant and growing buds were noted; the dormant buds had a lower volume density of vacuoles and higher relative volumes of mitochondria, plastids, lipid bodies, and starch grains than the growing buds. In the leaf primordia the relative volume of nuclei decreased with age, while the relative volume of plastids and mitochondria increased. The large central vacuole found in cells of e.g. the pro-cambium and rib meristem in growing buds is split into many smaller ones during the winter. A high content of tannin and calcium oxalate crystals was noted in dormant buds. They also accumulate lipids and starch. Phytoferritin may appear in plastids. Stacked ER and concentric sheaths of ER around lipid bodies appear, probably as a consequence of either anaerobic conditions or water stress. Several indications of metabolic activities in the seemingly dormant buds were found; plasmatubules at the plasmalemma particularly in the procambium, sheaths of smooth ER around the plastids, electron opaque globules (probably calcium-binding sites), and vacuoles that seemed to be autophagic.  相似文献   

6.
The ultrastructure of cells of the vegetative shoot apices is described for Chenopodium album, Kalanchoë blossfeldiana and K. laxiflora, Bryophyllum daigremontianum, Nicotiana rustica, and N. tabacum (Maryland Mammoth), and Ginkgo biloba. A less intensive study was made of the last three listed. The structures and organelles usually associated with meristematic cells were observed: dictyosomes, plastids (in various stages of development), mitochondria, endoplasmic reticulum (ER), vacuoles, lipid droplets, and plasmalemma. In addition, spherosome-like structures were observed in all zones of the shoot apices. Also, multivesicular bodies were observed in C. album and B. daigremontianum. Ribosome density is greater in cells of the flank meristem. Proplastids, plastids with prolamellar bodies, or grana have a differential distribution in the apex, characteristic for a particular species. Confirmation could not be given to the concept that vacuoles arise as a series of local dilations in long extensions of the so called "smooth ER." The tonoplast and ER are distinguishable at the time of inception of a vacuole, although the tonoplast may arise from the ER. Rapid growth of a vacuole and/or fusion with other vacuoles may result in irregularly shaped prevacuoles. No vacuoles were observed to originate from cisternae of dictyosomes in the species studied.  相似文献   

7.
In the liverwort Sphaerocarpus donnellii Aust., the behavior of the cell constituents, especially of mitochondria and plastids, was studied by electron microscopy during the development of the egg and its preceding cells. A degeneration and elimination of mitochondria and plastids was not found in any of the developmental stages. In all growth phases of the archegonium, the plastids may deposit starch which becomes especially frequent in the maturing egg cell. No indications have been observed that new mitochondria or plastids generate from the nuclear evaginations, which often penetrate deeply into the cytoplasm of the maturing and fully developed eggs. A quantitative investigation based on general micrographs elucidates the numerical aspects of the cell constituents during oögenesis. With the increase of cell volume, the numbers of dictyosomes, mitochondria, plastids, and lipid bodies increase. From the stages of the mother cell of the axial row up to that of the mature egg, the cell volume enlarges about 8 times and the nucleus volume about 15 times. Simultaneously, the numbers of mitochondria and plastids increase up to 8 to 15 times. On the basis of these findings, mitochondria and plastids with three-dimensional narrow constrictions are interpreted as divisional stages.  相似文献   

8.
Quantitative cell and organelle dynamics of the male gamete-producing lineage of Plumbago zeylanica were examined using serial transmission electron microscopic reconstruction at five stages of development from generative cell inception to sperm cell maturity. The founder population of generative cell organelles includes an average of 3.88 plastids, 54.9 mitochondria, and 3.7 vacuoles. During development the volume of the pollen grain increases from 6,200 μm3 in early microspores to 115,000 μm3 at anthesis, cell volume of the male germ lineage decreases more than 67% from 362.3 μm3 to 118.4 μm3. By the time the generative cell separates from the intine, plastid numbers increase by >600%, mitochondria by 250%, and vesicles by 43 times. A cellular projection elongates toward and establishes an association with the vegetative nucleus; this leading edge contains plastids and numerous mitochondria. When the generative cell completes its separation from the intine, organellar polarity is reversed and plastids migrate to the opposite pole of the cell. Cytoplasmic microtubules are common in association with cellular organelles. Plastids accumulate at the distal end of the cell as a linked mass, apparently adhered by lateral electron dense regions. Before division of the highly polarized generative cell, plastids decrease in number by 16%, whereas mitochondria increase by ∼90% and vacuoles increase by ∼140% from the prior stage. After mitosis, the resultant sperm cells differ in size and organelle content. The sperm cell associated with the vegetative nucleus (Svn) contains 62.7% of the cytoplasm volume, 87% of the mitochondria, 280.4 vesicles (79% of those in the generative cell), and 0.6% of the plastids. At maturity, the Svn mitochondria increase by 31% and the cell contains an average of 0.4 plastids, 158.9 vesicles, and 0.36 microbodies. The mature unassociated sperm (Sua) contains 39.8 mitochondria (up 3.3%), 24.3 plastids (down 31%), 91.1 vesicles (up 54.9%), and 3.18 microbodies. The small number of organelles initially in the generative cell, followed by their rapid multiplication in a shrinking cytoplasm suggests a highly competitive cytoplasmic environment that would tend to eliminate residual organellar heterogeneity. Cell and cytoplasmic volumes vary as a consequence of fluctuations in the number and size of large vesicles or vacuoles, as well as loss of cytoplasmic volume by (1) formation of “false cells” involving amitotic cytokinesis, (2) “pinching off” of cytoplasm, and (3) dehydration of pollen contents prior to anthesis.  相似文献   

9.
The guard cells of Opuntia contain numerous mitochondria, elements of endoplasmic reticulum, dictyosomes, and microbodies. A complex array of small to large vacuoles which contain small, membrane-bounded vesicles occur in each guard cell. The variety of cytoplasmic constituents and vacuoles suggest that the guard cells are complex in function. A highly reduced grana-fretwork system within the plastids indicates that the photosynthetic capacity of the guard cells is probably rather low. No plasmodesmata occur in the walls between the guard cells and the subsidiary cells while there are numerous invaginations of the guard cell plasmalemmas. Many of the variations in the plasmalemma probably indicate that the plasmalemma is a highly active interface.  相似文献   

10.
通过超微结构的观察,向日葵幼叶及其经培养后10天的愈伤组织细胞之间有明显区别。叶肉细胞的细胞质、细胞器及核的结构和发育都比较完整。当外植体组织发生变化和愈伤组织形成时,观察到线粒体相互连接成链状围绕在叶绿体周围,而叶绿体有的围绕在核的周围;线粒体的嵴和基质,叶绿体的基粒和片层结构常发生退化或解体,细胞质稀薄,核糖体和胞质凝成线状或网状,微体和高尔基体消失,液泡化程度高并含有较多的次生物质;而细胞核在后期才发生明显变化,轮廓不够清晰。  相似文献   

11.
Ultrastructural differentiation in the shoot apex of growing vegetative buds of Salix was studied, and some micrographs analysed morphometrically. The distribution of inorganic phospahte (P;) was analysed cytochemically. A distinct histological zona–tion was observed in the apex. The relative volumes of nuclei and plastids were significantly higher in the central tunica zone than in the peripheral one. The corpus differed from the central tunica zone by significantly lower volume density of nuclei and higher of vacuoles and mitochondria. During differentiation of the rib meristem vacuole volume increased significantly, while the relative volumes of nuclei, mitochondria, nucleoli, and heterochromatin decreased. It was not possible to decide whether the vacuoles originate from ER or GERL. Morphogenesis of chloroplasts with large starch grains and grana from proplastids was evident in the rib meristem; dedifferentiation to S–plastids was found in the protophloem. Prolamellar bodies were observed in the procambium plastids. The protophloem was characterized by P–protein and spiny vesicles. Pi was found in the nucleoli of most epidermis cells, several procambium cells, and a few chlorencyma cells, but never in the tunica of the growing apical and developing lateral buds. Pi also occurred in some plasmalemma–somes and occasionally in the walls in connection with plasmodesmata.  相似文献   

12.
Developing sieve elements of pennycress (Thlaspi arvense L.) were studied with the electron microscope. The maturation of sieve elements involved loss of ribosomes from cytoplasm; degeneration of nulcei; modification of endoplasmic reticulum (ER); loss of tonoplast; and disappearance of dictyosomes and dictyosomes vesicles, coated vesicles, microtubules, and microbodies. Such changes produce a mature, presumably conducting cell that contains no nucleus or central vacuole but which retains a thin layer of peripheral cytoplasm with plastids, mitochondria, and smooth ER. Some similar changes have been described in a variety of developing sieve elements of angiosperms, but coated vesicles and microbodies previously have not been followed through sieve-element maturation. Likewise, few developmental studies have been made of plant sieve elements that exhibit two types of P-protein, the tubular type and the granular P-protein body.  相似文献   

13.
Plastochronic changes in the vegetative shoot apex and originand development of axillary and accessory buds are studied. The flat shoot apex shows structural and dimensional changesin a plastochron. They are described in three phases, the pre-leafinitiation, the leaf initiation, and the post-leaf initiation.The youngest axillary bud meristem is identified near the axilat the second node when the subtending leaf primordium is 200–12µ long. The corpus of the bud meristem has a more activerole in bud development than has the tunica layers. The shellzone associated with a young bud meristem persists until thebud has attained the structural and functional attributes ofthe main shoot apex. It loses its histological identity by producingderivatives which merge with the ground tissue and procambialcells of bud traces. In a developing bud the provascular systemof the bud appears as an arc, a loop, or as a ring in transversesections at different levels. These configurations are composedof anastomosing procambial strands of bud trace and residualmeristem, both being differentiated from developing bud meristem.  相似文献   

14.
锦橙汁囊的超微结构   总被引:1,自引:0,他引:1  
用常规电镜方法观察了锦橙[Citrussinensis (L.) Osb.]汁囊从原始细胞到发育为一个具柄的成熟汁囊的过程中,汁囊构成细胞超微结构的变化。锦橙汁囊原始细胞及发育为球状体时的构成细胞以及柱状结构顶端的细胞都是一种典型的分生组织细胞。在细胞质中有包括线粒体、质体、内质网、核糖体等丰富的细胞器,但没有观察到高尔基体。这些分生细胞分裂一段时期后就停止活动,逐渐分化为适应贮藏功能的液泡化薄壁细胞。分生细胞开始分化时,在细胞中出现许多小液泡和高尔基体。这些小液泡逐渐地融合,同时细胞质变少,最后形成一个有中央大液泡的薄壁细胞,在紧贴细胞膜的薄薄的一层细胞质中有线粒体、质体、高尔基体以及含有许多脂滴的杂色体。但成熟果实中汁囊的薄壁细胞中几乎没有任何细胞器。  相似文献   

15.
Summary The ultrastructure of the antipodals ofAconitum vulparia Rchb. was studied in mature embryo sacs. Antipodal cell wall thickness varies in different parts of the cells. The antipodals resemble transfer cells with distinctly marked wall ingrowths which are particularly well developed in the chalazal part and between the antipodals. A few plasmodesmata occur in the cell wall between the antipodals and the central cell. The cytoplasm is rich in ribosomes which occur free or bound to the membranes of the well developed endoplasmic reticulum. Only in the micropylar region of the cells are some larger vacuoles found. The antipodals contain numerous mitochondria, plastids and apparently active dictyosomes. Vesicles with electron dense contents, microbodies, multivesicular bodies as well as lipid droplets and small multiple concentric cisternae are also present in the cytoplasm. The giant endopolyploid nuclei have lobed outlines, especially at the chalazal side of the nuclei.Ultrastructural features, especially the occurrence of numerous free ribosomes and the development of extensive rough endoplasmic reticulum, suggest high metabolic activity in the growing and differentiating antipodals of this species.  相似文献   

16.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

17.
Ultrastructure of Jincheng juice sac of Citrus sinensis (L.) Osb. was continuously investigated from the initial cell to the stalk-bearing sac. The initial cell and cells formed globularstructure, as well as the uper cells of the column-structure were typical meristem cells with mitochondria, plastids, rough endoplasmic reticulum, rich ribosome without Golgi body in their dense cytoplasm. These meristem cells would differentiate into parenchyma ceils pro2 viding storage function. At the beginning of differentiation of the meristem cells, the number of small vacuoles increased and some Golgi bodies appeared. Small vacuoles gradually fused into a central vacuole. During the fusion of small vacuoles, the cytoplasm became thinned, but still contained mitochondria, plastids, Golgi bodies, end0plasmic reticulum and some chromplasts with lipid drops. Almost no organelle were ever observed in the parenchyma cells of juice sac from mature fruit.  相似文献   

18.
Shoot apices of Saraca indica produce adult leaves that have 4 to 6 pairs of leaflets, whereas those of S. bijuga usually have only 2 pairs. In both species one leaflet pair is found during the juvenile phase. Juvenility lasts many plastochrons in S. bijuga but is restricted to a few in S. indica. The shoot apical meristems of these two taxa are similar in structure, cell number, and cell size; however, the shoot apex of Saraca bijuga is slightly more stratified, having 2–3 tunica layers as opposed to 1–2 in S. indica. For most of the plastochron the apical meristem in both species is situated laterally at the base of the most recently formed leaf. A newly forming primordium and its internode shift the apical meristem upward unilaterally; the meristem passes through a brief apical dome stage and becomes positioned 180° from its origin at the beginning of the plastochron. Hence, there is a true pendulum meristem in both species. In S. bijuga the maximum length of the youngest leaf primordium, just prior to the formation of its successor, is twice that of S. indica. The internodes immediately below the shoot apex and the axillary buds develop more rapidly in S. bijuga than in S. indica. It is suggested that the bijugate leaf of S. bijuga represents a case of neoteny in plants.  相似文献   

19.
An electron microscope study was made of the central cell and the development of the free nuclear endosperm surrounding the zygote and synergids during the first three days after pollination. The cytoplasm of the central cell, concentrated around the partially-fused polar nuclei, contains many ribosomes, mitochondria and large, dense, starch-containing plastids, some dictyosomes and lipid bodies, and long, single cisternae of rough endoplasmic reticulum (RER) that frequently terminate in whorls. Dense, core-containing microbodies are closely associated with the RER. After fertilization the cytoplasm of the 2-and 4-nucleate endosperm shows an increase in number of dictyosomes, and in amount of RER which becomes stacked in arrays of parallel cisternae. Cup-shaped plastids are associated with many long, helical polysomes. Perinuclear aggregates of dense, granular material also appear after fertilization. Granular aggregates and helical polysomes disappear after the first few divisions of the primary endosperm nucleus. During the second and third days of development there is an increase in dictyosome number and RER proliferation, and endosperm nuclei become deeply lobed. Concurrently, there is a sharp decline in the starch and lipid reserves of the central cell and elaborate transfer walls are formed at the micropylar end of the embryo sac and on the outer surface of the degenerating synergid. The transfer walls contain groups of small, membrane-bound vesicles, and are associated with large numbers of mitochondria and with the smooth endoplasmic reticulum.  相似文献   

20.
The structure of the plumule of Nelumbo nucifera Gaertn. and its feature covered with scale are seldom seen in dicotyledon. The fact that the plumule possesses scale is even more uncommon. This particular phenomenon is investigated by observing the differentiation of the plumule apex and the development of the leaf organs. After the seed is formed, the embryo has two young leaves and a terminal bud covered with scale. In the bud it has already differentiated the 3rd and the 4th leaf primordium and a shoot apex, the differentiation of which is very complex. So the structure of the plumule passes through 4 plastochrons altogether. It is made clear through observation and analysis that, before the 4th leaf primordium is formed, the transforma- tions of the shoot apex of the embryo in each plastochron are fundamentally alike. After the 4th leaf primordium is developed, the shoot apex becomes complex and there appear 3 different active cell regions which become the bases of vegetative bud of the seeding apex. The development of these 3 active cell regions will be stated in “The Structure of the Vegetative Bud of Nelumbo nucifera Gaertn. and the Nature of its Scales.” The apices of the plumule are almost slightly domed in structure. As a rule, their width is from 95 to 107 μ. Their height is from 17 to 20 μ during one plastochron. Before the 3rd leaf initiation, the anatomical structure of apices is examined and the fol- lowing zones may be delimited: zone of tunica initials, zone of corpus initials, peripheral zone, and zone of rib meristems. It is frequently observed that the cell of corpus in subapical peripheral zone develops periclinal division, which is the initial cell of leaf primordium; Procambium will appear before the stage of the appearance of leaf buttress. The apex of the plumule is in an apical position, but when the seedling is formed, as the developing leaves are alternate, the directions of the shoot apex are changed, simultaneously the base part of the leaf encloses the axis, and the adaxial meristem also differentiates the scale which encloses the terminal bud, thus placing the bud in axillary of the leaf and forming a zigzag phenomenon of the axis of the seedling. Above the basal adaxial side of the leaf primordium develops the scale of the plumule with meristem periclinal division of closely attached protoderm as its base. So the scale of the plumule of Nelumbo nucifera Gaertn. and the axillary stipule are of the same origin. To sum up, the scale of the embryo of Nelumbo nucifera Gaertn. is differentiated from the adaxial meristem of the basal part of the leaf primordium, and is the derivative part of the leaf. It has the same function as the coleoptile of the monocotyledon. Whether they are homologous organs or not is still to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号